Functional and structural features of proteins associated with alternative splicing.

Int J Biol Macromol

Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya street 10, 119121 Moscow, Russia. Electronic address:

Published: March 2020

The alternative splicing is a mechanism increasing the number of expressed proteins and a variety of these functions. We uncovered the protein domains most frequently lacked or occurred in the splice variants. Proteins presented by several isoforms participate in such processes as transcription regulation, immune response, etc. Our results displayed the association of alternative splicing with branched regulatory pathways. By considering the published data on the protein proteins encoded by the 18th human chromosome, we noted that alternative products display the differences in several functional features, such as phosphorylation, subcellular location, ligand specificity, protein-protein interactions, etc. The investigation of alternative variants referred to the protein kinase domain was performed by comparing the alternative sequences with 3D structures. It was shown that large enough insertions/deletions could be compatible with the kinase fold if they match between the conserved secondary structures. Using the 3D data on human proteins, we showed that conformational flexibility could accommodate fold alterations in splice variants. The investigations of structural and functional differences in splice isoforms are required to understand how to distinguish the isoforms expressed as functioning proteins from the non-realized transcripts. These studies allow filling the gap between genomic and proteomic data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.09.241DOI Listing

Publication Analysis

Top Keywords

alternative splicing
12
splice variants
8
proteins
6
alternative
6
functional structural
4
structural features
4
features proteins
4
proteins associated
4
associated alternative
4
splicing alternative
4

Similar Publications

Identification of Proteoforms Related to Flower Petaloid Through Proteogenomic Strategy.

Proteomes

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China.

is an aquatic plant with a high ornamental value due to its flower. Despite the release of several versions of the lotus genome, its annotation remains inefficient, which makes it difficult to obtain a more comprehensive knowledge when -omic studies are applied to understand the different biological processes. Focusing on the petaloid of the lotus flower, we conducted a comparative proteomic analysis among five major floral organs.

View Article and Find Full Text PDF

Alternative splicing (AS) is a mechanism that generates translational diversity within a genome. Equally important is the dynamic adaptability of the splicing machinery, which can give preference to one isoform over others encoded by a single gene. These isoform preferences change in response to the cell's state and function.

View Article and Find Full Text PDF

The splicing auxiliary factor OsU2AF35a enhances thermotolerance via protein separation and promoting proper splicing of OsHSA32 pre-mRNA in rice.

Plant Biotechnol J

January 2025

Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China.

Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3'-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65).

View Article and Find Full Text PDF

Mutations of the MECP2 gene lead to Rett syndrome (RTT), a rare developmental disease causing severe intellectual and physical disability. How the loss or defective function of MeCP2 mediates RTT is still poorly understood. MeCP2 is a global gene expression regulator, acting at transcriptional and post-transcriptional levels.

View Article and Find Full Text PDF

Splice age: mTORC1-mediated RNA splicing in metabolism and ageing.

Trends Cell Biol

January 2025

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain. Electronic address:

The target of rapamycin complex mTORC1 has key roles in cell growth and metabolism and its inhibition delays ageing. Recent work by Ogawa et al. in Caenorhabditis elegans argues that modulation of pre-mRNA splicing factors and alternative splicing are key mediators of mTORC1 signalling and can enhance longevity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!