Bilateral activation in motor cortex is observed during paretic hand performance after stroke; however the functional significance of contralesional motor cortex (C-M1) activation is highly debated. Particularly, it is not known if task characteristics such as dexterity influence the causal engagement of C-M1 during paretic hand performance. Transcranial magnetic stimulation (TMS) was used to quantify motor corticospinal physiology of the CM1 projecting to the contralateral resting extensor carpi radialis brevis (ECRB) and first dorsal interosseous (FDI) while eleven participants with unilateral stroke performed unimanual tasks of differing dexterity with their paretic hand. The novel finding was that compared to rest and less dexterous task (LDT), more dexterous task (MDT) performance led to increased corticospinal excitability and decreased intracortical inhibition of the C-M1 projecting to the resting FDI, but not resting ECRB. Further, using trains of repetitive TMS during MDT and LDT, we tested the behavioral relevance of C-M1 for paretic hand performance. Online rTMS perturbation to C-M1, but not to the vertex or sham stimulation led to significantly more movement errors during MDT without consistently affecting LDT performance. The present results argue for a beneficial role of C-M1 for accurate performance during dexterous motor actions with the paretic hand after stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2020.134751 | DOI Listing |
Exp Brain Res
December 2024
Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, SD, USA.
Injury to one cerebral hemisphere can result in paresis of the contralesional hand and subsequent preference of the ipsilesional hand in daily activities. However, forced use therapy in humans can improve function of the contralesional paretic hand and increase its use in daily activities, although the ipsilesional hand may remain preferred for fine motor activities. Studies in monkeys have shown that minimal forced use of the contralesional hand, which was the preferred hand prior to brain injury, can produce remarkable recovery of function.
View Article and Find Full Text PDFBiomed Eng Online
December 2024
Department of Clinical Physiology, Motion Analysis Center, University Hospital of Toulouse, Hôpital de Purpan, Toulouse, France.
Background: Stroke is the leading cause of acquired motor deficiencies in adults. Restoring prehension abilities is challenging for individuals who have not recovered active hand opening capacities after their rehabilitation. Self-triggered functional electrical stimulation applied to finger extensor muscles to restore grasping abilities in daily life is called grasp neuroprosthesis (GNP) and remains poorly accessible to the post-stroke population.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
Background: This research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation.
View Article and Find Full Text PDFAnn Neurol
December 2024
Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA.
Objective: Vagus nerve stimulation (VNS) paired with rehabilitation therapy improved motor status compared to rehabilitation alone in the phase III VNS-REHAB stroke trial, but treatment response was variable and not associated with any clinical measures acquired at baseline, such as age or side of paresis. We hypothesized that neuroimaging measures would be associated with treatment-related gains, examining performance of regional injury measures versus global brain health measures in parallel with clinical measures.
Methods: Baseline magnetic resonance imaging (MRI) scans in the VNS-REHAB trial were used to derive regional injury measures (extent of injury to corticospinal tract, the primary regional measure; plus extent of injury to precentral gyrus and postcentral gyrus; lesion volume; and lesion topography) and global brain health measures (degree of white matter hyperintensities, the primary global brain measure; plus volumes of cerebrospinal fluid, cortical gray matter, white matter, each thalamus, and total brain).
Exp Physiol
December 2024
Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
The ability to regulate finger forces is critical for manipulating objects during everyday tasks but is impaired after damage to white matter tracts that transmit motor commands into the spinal cord. This study examines cortico-spinal connectivity required for force control by the digits after neurological injury. We report on a unique case of a stroke survivor who retained the ability to control finger forces at a level comparable to neurologically intact adults despite extensive loss of white matter volume and severely compromised transmission from cortical motor areas onto the final common pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!