Evaluation of proprioception in denervated and healthy wrist joints.

J Hand Surg Eur Vol

Department of General, Visceral and Vascular Surgery, Hospital Vivantes Spandau, Berlin, Germany.

Published: May 2020

We recruited 25 patients after complete wrist denervation and 60 healthy adults to investigate conscious and unconscious proprioception of the wrist. Ipsi- and contralateral joint-position sense, force sense, and wrist reflexes were measured. The latter were triggered by a trapdoor, recording electromyographic signals from the extensor carpi radialis brevis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris muscles. No significant differences were found for joint position sense, force sense, and wrist reflexes between both groups, except for reflex time of the flexor carpi ulnaris after denervation of the left wrist as compared with the left flexor carpi ulnaris in controls or in right operated wrists. At a mean follow-up of 32 months (range 8 to 133), we found no proprioceptive deficit of the conscious proprioceptive qualities of joint position sense, force sense, and the unconscious proprioceptive neuromuscular control of wrist reflex time for most muscles after complete wrist denervation. We conclude from this study that complete wrist denervation does not affect the proprioceptive senses of joint position, force sense, and reflex time of the wrist.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1753193419897192DOI Listing

Publication Analysis

Top Keywords

force sense
16
carpi ulnaris
16
flexor carpi
16
complete wrist
12
wrist denervation
12
sense force
12
joint position
12
reflex time
12
wrist
10
sense wrist
8

Similar Publications

Ferroelectric and Optoelectronic Coupling Effects in Layered Ferroelectric Semiconductor-Based FETs for Visual Simulation.

Adv Sci (Weinh)

January 2025

Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.

Controlling polarization states of ferroelectrics can enrich optoelectronic properties and functions, offering a new avenue for designing advanced electronic and optoelectronic devices. Here, ferroelectric semiconductor-based field-effect transistors (FeSFETs) are fabricated, where the channel is a ferroelectric semiconductor (e.g.

View Article and Find Full Text PDF

Constructing mechanosensitive signalling pathways de novo in synthetic cells.

Biochem Soc Trans

January 2025

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K.

Biological mechanotransduction enables cells to sense and respond to mechanical forces in their local environment through changes in cell structure and gene expression, resulting in downstream changes in cell function. However, the complexity of living systems obfuscates the mechanisms of mechanotransduction, and hence the study of these processes in vitro has been critical in characterising the function of existing mechanosensitive membrane proteins. Synthetic cells are biomolecular compartments that aim to mimic the organisation, functionality and behaviours of biological systems, and represent the next step in the development of in vitro cell models.

View Article and Find Full Text PDF

Making Proteins with Electricity.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Ribosomes use multiple electrical forces to regulate new protein construction, to ensure efficient protein cotranslation, chaperoning, and folding. When these electrical regulatory forces are disrupted as in point charge mutations, specific disease occurs from aberrantly folded proteins. α1 antitrypsin deficiency is perhaps the best-known misfolded protein disease and is covered in some detail.

View Article and Find Full Text PDF

Background And Aim: Hyperventilation before breath-hold diving (freediving) is widely accepted as a risk factor for hypoxic syncope or blackout (BO), but there is no practical way to address it before dives. This study explores the feasibility of using a force sensor to predict end-tidal carbon dioxide ( CO) to assess hyperventilation in freedivers.

Methods And Results: Twenty-one freedivers volunteered to participate during two national competitions.

View Article and Find Full Text PDF

Electro-tactile modulation of muscle activation and intermuscular coordination in the human upper extremity.

Sci Rep

January 2025

Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.

Electro-tactile stimulation (ETS) can be a promising aid in augmenting sensation for those with sensory deficits. Although applications of ETS have been explored, the impact of ETS on the underlying strategies of neuromuscular coordination remains largely unexplored. We investigated how ETS, alone or in the presence of mechano-tactile environment change, modulated the electromyogram (EMG) of individual muscles during force control and how the stimulation modulated the attributes of intermuscular coordination, assessed by muscle synergy analysis, in human upper extremities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!