Being able to electrically manipulate the magnetic properties in recently discovered van der Waals ferromagnets is essential for their integration in future spintronics devices. Here, the magnetization of a semiconducting 2D ferromagnet, i.e., Cr Ge Te , is studied using the anomalous Hall effect in Cr Ge Te /tantalum heterostructures. The thinner the flakes, hysteresis and remanence in the magnetization loop with out-of-plane magnetic fields become more prominent. In order to manipulate the magnetization in such thin flakes, a combination of an in-plane magnetic field and a charge current flowing through Ta-a heavy metal exhibiting giant spin Hall effect-is used. In the presence of in-plane fields of 20 mT, charge current densities as low as 5 × 10 A cm are sufficient to switch the out-of-plane magnetization of Cr Ge Te . This finding highlights that current densities required for spin-orbit torque switching of Cr Ge Te are about two orders of magnitude lower than those required for switching nonlayered metallic ferromagnets such as CoFeB. The results presented here show the potential of 2D ferromagnets for low-power memory and logic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201906021 | DOI Listing |
Adv Mater
January 2025
Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.
In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra-fast, energy-efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin-orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA.
In this paper, we review our work on the manipulation of magnetization in ferromagnetic semiconductors (FMSs) using electric-current-induced spin-orbit torque (SOT). Our review focuses on FMS layers from the (Ga,Mn)As zinc-blende family grown by molecular beam epitaxy. We describe the processes used to obtain spin polarization of the current that is required to achieve SOT, and we briefly discuss methods of specimen preparation and of measuring the state of magnetization.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.
View Article and Find Full Text PDFNano Lett
January 2025
School of Microelectronics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
Spin-orbit torque (SOT) is widely considered to be a fast and robust writing scheme for magnetic random-access memories (MRAMs). However, the requirements of field-free switching and high switching efficiency are often incompatible in SOT devices, placing a critical challenge on its improvement. Here we propose that by utilizing biaxial systems the dilemma between high-efficiency and external-field-free SOT switching can be solved intrinsically.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China.
Realizing spin-orbit torque (SOT)-driven magnetization switching offers promising opportunities for the advancement of next-generation spintronics. However, the relatively low charge-spin conversion efficiency accompanied by an ultrahigh critical switching current density () remains a significant obstacle to the further development of SOT-based storage elements. Herein, spin absorption engineering at the ferromagnet/nonmagnet interface is firstly proposed to achieve high SOT efficiency in Pt/Co/Ir trilayers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!