As a convenient, effective and economical kidney replacement therapy for end-stage renal disease (ESRD), peritoneal dialysis is available in approximately 11% of ESRD patients worldwide. However, long-term peritoneal dialysis treatment causes peritoneal fibrosis. In recent years, the application potential of molecular hydrogen in the biomedicine has been well recognized. Molecular hydrogen selectively scavenges cytotoxic reactive oxygen species (ROS) and acts as an antioxidant. In this experiment, a high glucose-induced peritoneal fibrosis mouse model was successfully established by intraperitoneal injection of high glucose peritoneal dialysate, and peritoneal fibrosis mice were treated with hydrogen-rich peritoneal dialysate. In addition, in vitro studies of high glucose-induced peritoneal fibrosis were performed using MeT-5A cells. In vitro and in vivo experiments show that molecular hydrogen could inhibit peritoneal fibrosis progress induced by high glucose effectively. Furthermore, it has been found that molecular hydrogen alleviate fibrosis by eliminating intracellular ROS and inhibiting the activation of the PTEN/AKT/mTOR pathway. The present data proposes that molecular hydrogen exerts the capacity of anti-peritoneal fibrosis through the ROS/PTEN/AKT/mTOR pathway. Therefore, molecule hydrogen is a potential, safe, and effective treatment agent, with peritoneal protective property and great clinical significance.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201901981RDOI Listing

Publication Analysis

Top Keywords

molecular hydrogen
24
peritoneal fibrosis
24
peritoneal
12
fibrosis
8
peritoneal dialysis
8
high glucose-induced
8
glucose-induced peritoneal
8
high glucose
8
peritoneal dialysate
8
molecular
6

Similar Publications

A sterilization method for human decellularized vaginal matrices.

Sci Rep

December 2024

Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Vaginal reconstruction is necessary for various congenital and acquired conditions, including vaginal aplasia, trauma, tumors, and gender incongruency. Current surgical and non-surgical treatments often result in significant complications. Decellularized vaginal matrices (DVMs) from human tissue offer a promising alternative, but require effective sterilization to ensure safety and functionality.

View Article and Find Full Text PDF

Triterpene esters from Uncaria rhynchophylla hooks as potent HIV-1 protease inhibitors and their molecular docking study.

Sci Rep

December 2024

Department of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.

Despite significant advancements with combination anti-retroviral agents, eradicating human immunodeficiency virus (HIV) remains a challenge due to adverse effects, adherence issues, and emerging viral resistance to existing therapies. This underscores the urgent need for safer, more effective drugs to combat resistant strains and advance acquired immunodeficiency syndrome (AIDS) therapeutics. Eight triterpene esters (1-8) were identified from Uncaria rhynchophylla hooks.

View Article and Find Full Text PDF

Ampere-level reduction of pure nitrate by electron-deficient Ru with K ions repelling effect.

Nat Commun

December 2024

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.

View Article and Find Full Text PDF

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!