Acute kidney injury (AKI) is a common serious syndrome characterized by rapid decrease of glomerular filtration rate and the progressive increase of serum creatinine. Circular RNAs (circRNAs) are regulatory RNAs that recently became popular among various diseases. However, the expression profile and function of circRNAs in AKI remain largely unknown. The main function of circRNAs is acting as competing endogenous RNAs (ceRNAs) by binding with microRNAs (miRNAs), as indicated by recent research. In the present study, we established cisplatin-induced AKI model in mice and isolated renal tubular tissues to extract circRNAs for next-generation sequencing (NGS) and bioinformatics analysis. We analyzed the composition, distribution and Gene Ontology terms of circRNAs in cisplatin-induced AKI and revealed differentially expressed circRNAs related to AKI. By finding homologous genes between mouse and human, we identified circRNA- circ-0114427 in humans. We further investigated its function in AKI cell model. Circ-0114427 expression was significantly up-regulated in different AKI cell models. Knockdown of circ-0114427 indicated that circ-0114427 bound to miR-494 as a miRNA sponge to regulate ATF3 expression and further affected the expression of downstream cytokine IL-6. Circ-0114427 regulates inflammatory progression in AKI's early stage via circ-0114427/miR-494/ATF3 pathway. Our findings reveal the expression profile of circRNAs in cisplatin-induced AKI and provide a novel insight into the regulatory mechanism of circRNAs, which may become a new molecular target resource for early diagnosis and treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20190990DOI Listing

Publication Analysis

Top Keywords

cisplatin-induced aki
12
acute kidney
8
kidney injury
8
aki
8
circrnas
8
expression profile
8
function circrnas
8
circrnas aki
8
circrnas cisplatin-induced
8
aki cell
8

Similar Publications

Background: Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms.

Methods: A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSC).

View Article and Find Full Text PDF

Cisplatin is a widely used anticancer drug, but its accumulation in renal tubular epithelial cells (TECs) can cause acute kidney injury. Phosphoseryl-tRNA kinase (PSTK) is an intermediate product produced under oxidative stress conditions. This study aimed to elucidate whether PSTK could protect TECs and its possible mechanisms.

View Article and Find Full Text PDF

Ferroptosis plays a key role in cisplatin-induced acute kidney injury (AKI). Bergenin, which is extracted from Ardisiae Japonicae Herba and has long been used in folk tea and herbal tea drinks, is known to activate Nrf2 and has anti-inflammatory and antioxidant properties, however, its protective influence on CI-AKI has not been elucidated. We used models of cisplatin-induced nephrotoxicity in vitro and CI-AKI models in vivo.

View Article and Find Full Text PDF

Cisplatin is widely used for the treatment of solid tumors and its antitumor effects are well established. However, a known complication of cisplatin administration is acute kidney injury (AKI). In this study, we examined the role of TEA domain family member 1 (TEAD1) in the pathogenesis of cisplatin-induced AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!