Prevention of desiccation is a constant challenge for terrestrial organisms. Land insects have an extracellular coat, the cuticle, that plays a major role in protection against exaggerated water loss. Here, we report that the ABC transporter Oskyddad (Osy)-a human ABCA12 paralog-contributes to the waterproof barrier function of the cuticle in the fruit fly Drosophila melanogaster. We show that the reduction or elimination of Osy function provokes rapid desiccation. Osy is also involved in defining the inward barrier against xenobiotics penetration. Consistently, the amounts of cuticular hydrocarbons that are involved in cuticle impermeability decrease markedly when Osy activity is reduced. GFP-tagged Osy localises to membrane nano-protrusions within the cuticle, likely pore canals. This suggests that Osy is mediating the transport of cuticular hydrocarbons (CHC) through the pore canals to the cuticle surface. The envelope, which is the outermost cuticle layer constituting the main barrier, is unaffected in osy mutant larvae. This contrasts with the function of Snu, another ABC transporter needed for the construction of the cuticular inward and outward barriers, that nevertheless is implicated in CHC deposition. Hence, Osy and Snu have overlapping and independent roles to establish cuticular resistance against transpiration and xenobiotic penetration. The osy deficient phenotype parallels the phenotype of Harlequin ichthyosis caused by mutations in the human abca12 gene. Thus, it seems that the cellular and molecular mechanisms of lipid barrier assembly in the skin are conserved during evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980720 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1008363 | DOI Listing |
Nat Commun
January 2025
Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France.
To ensure their survival, animals must be able to respond adaptively to threats within their environment. However, the precise neural circuit mechanisms that underlie flexible defensive behaviors remain poorly understood. Using neuronal manipulations, machine learning-based behavioral detection, electron microscopy (EM) connectomics and calcium imaging in Drosophila larvae, we map second-order interneurons that are differentially involved in the competition between defensive actions in response to competing aversive cues.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China. Electronic address:
The β-tubulin gene is essential for reproductive development, especially for male fertility, in different insects including Bombyx mori and Drosophila melanogaster. Targeting reproductive genes such as β-tubulin offers a promising approach to pest control that is more sustainable than chemical pesticides. However, there is limited research on the functional role of β-tubulin in Plutella xylostella, a highly damaging pest of vegetable crops.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFThe Drosophila melanogaster olfactory system is one of the most intensively studied parts of the nervous system in any animal. Composed of ~60 independent olfactory neuron classes, with several associated hygrosensory and thermosensory pathways, it has been subject to diverse types of experimental analyses. However, synthesizing the available data is limited by the incompleteness and inconsistent nomenclature found in the literature.
View Article and Find Full Text PDFNutrition plays a central role in healthy living, however, extensive variability in individual responses to dietary interventions complicates our understanding of its effects. Here we present a comprehensive study utilizing the Genetic Reference Panel (DGRP), investigating how genetic variation influences responses to diet and aging. Quantitative genetic analyses of the impact of dietary restriction on lifespan, locomotor activity, dry weight, and heat knockdown time were performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!