NEMO is a scaffolding protein which plays an essential role in the NF-κB pathway by assembling the IKK-complex with the kinases IKKα and IKKβ. Upon activation, the IKK complex phosphorylates the IκB molecules leading to NF-κB nuclear translocation and activation of target genes. Inhibition of the NEMO/IKK interaction is an attractive therapeutic paradigm for the modulation of NF-κB pathway activity, making NEMO a target for inhibitors design and discovery. To facilitate the process of discovery and optimization of NEMO inhibitors, we engineered an improved construct of the IKK-binding domain of NEMO that would allow for structure determination of the protein in the apo form and while bound to small molecular weight inhibitors. Here, we present the strategy utilized for the design, expression and structural characterization of the IKK-binding domain of NEMO. The protein is expressed in E. coli cells, solubilized under denaturing conditions and purified through three chromatographic steps. We discuss the protocols for obtaining crystals for structure determination and describe data acquisition and analysis strategies. The protocols will find wide applicability to the structure determination of complexes of NEMO and small molecule inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359928 | PMC |
http://dx.doi.org/10.3791/60339 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!