DNA is a versatile biomaterial with well-defined mechanical and biochemical properties. It has been broadly adopted to synthesize tension sensors that calibrate and visualize cellular forces at the cell-matrix interface. Here we showed that DNA-based tension sensors are vulnerable to deoxyribonucleases (DNases) which cells may express on cell membrane or secret to the culture environment. These DNases can damage the sensors, lower signal-to-noise ratio or even produce false signal in cellular force imaging. To address this issue, we tested peptide nucleic acid (PNA), chemically modified RNA and their hybrids with DNA as alternative biomaterials for constructing tension sensors. Four duplexes: double-stranded DNA (dsDNA), PNA/DNA, dsRNA (modified RNA) and PNA/RNA, were tested and evaluated in terms of DNase resistance, cellular force imaging ability and material robustness. The results showed that all PNA/DNA, dsRNA and PNA/RNA exhibited strong resistance to both soluble DNase I and membrane-bound DNase on cells. However, PNA/RNA-based tension sensor had low signal-to-noise ratio in cellular force imaging, and dsRNA-based tension sensor exhibited strong non-specific signal unrelated to cellular forces. Only PNA/DNA-based tension sensor reported cellular forces with highest signal-to-noise ratio and specificity. Collectively, we confirmed that PNA/DNA hybrid is an accessible material for the synthesis of DNase-resistant tension sensor that retains the force-reporting capability and remains stable in DNase-expressing cells. This new class of tension sensors will broaden the application of tension sensors in the study of cell mechanobiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961813 | PMC |
http://dx.doi.org/10.1016/j.bios.2019.111959 | DOI Listing |
Front Physiol
December 2024
Department of Biological and Medical Sciences, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia.
Prolonged sitting leads to a slumped posture, which indirectly influences spinal curvature and increases low back and hamstring stiffness. Active rather than passive recovery is an effective way to reduce the risks associated with such prolonged inactivity. However, it remains to be investigated which of the exercises frequently used for this purpose, the trunk stability and foam rolling exercise, is more beneficial.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
Background: Orthotic treatment is a well-acknowledged conservative treatment for moderate adolescent idiopathic scoliosis (AIS). The efficacy of this treatment is significantly determined by the forces applied to the bodies of patients. However, there is uncertainty regarding the optimal force levels that should be applied to the patient's torso by spinal orthosis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Examining the mechanical properties of polymer thin films is crucial for high-performance applications such as displays, coatings, sensors, and thermal management. It is important to design thin film microstructures that excel in high-demand situations without compromising mechanical integrity. Here, a polymer blend of polystyrene (PS) and polyisoprene (PI) is used as a model to explore microscale deformation behavior under uniaxial mechanical testing.
View Article and Find Full Text PDFJ Gen Physiol
January 2025
Chemistry Department, University of Massachusetts Lowell, Lowell, MA, USA.
Titin is the third contractile filament in the sarcomere, and it plays a critical role in sarcomere integrity and both passive and active tension. Unlike the thick and thin filaments, which are polymers of myosin and actin, respectively, titin is a single protein that spans from Z-disk to M-line. The N2A region within titin has been identified as a signaling hub for the muscle and is shown to be involved in multiple interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!