Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose an electrochemical sensor based on the enhanced electrocatalytic oxidation exhibited on a functionalized poly(tannic acid) coating to detect hydrazine. Tannic acid, a naturally abundant and low-cost polyphenol, was enzymatically polymerized with horseradish peroxidase and subsequently adsorbed on a disposable screen-printed carbon electrode with a short incubation time (30 min). The fabrication method proved to be reproducible (4.2 % relative standard deviation), with the sensors displaying high sensitivity (7 × 10 μA mm μM) and selectivity even in the presence of various common interfering agents. The low detection limit (100 nM) and robustness of the sensor demonstrated its suitability for environmental applications. It can be used to quantify hydrazine in tap and river water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2019.111927 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!