The Microbial fuel cell (MFC) technology harnesses the potential of some naturally occurring bacteria for electricity generation. Digested sludge is commonly used as the inoculum to initiate the process. There are, however, health hazards and practical issues associated with the use of digested sludge depending on its origin as well as the location for system deployment. This work reports the development of an efficient electroactive bacterial community within ceramic-based MFCs fed with human urine in the absence of sludge inoculum. The results show the development of a uniform bacterial community with power output levels equal to or higher than those generated from MFCs inoculated with sludge. In this case, the power generation begins within 2 days of the experimental set-up, compared to about 5 days in some sludge-inoculated MFCs, thus significantly reducing the start-up time. The metagenomics analysis of the successfully formed electroactive biofilm (EAB) shows significant shifts between the microbial ecology of the feeding material (fresh urine) and the developed anodic biofilm. A total of 21 bacteria genera were detected in the urine feedstock whilst up to 35 different genera were recorded in the developed biofilm. Members of Pseudomonas (18%) and Anaerolineaceae (17%) dominate the bacterial community of the fresh urine feed while members of Burkholderiaceae (up to 50%) and Tissierella (up to 29%) dominate the anodic EAB. These results highlight a significant shift in the bacterial community of the feedstock towards a selection and adaptation required for the various electrochemical reactions essential for survival through power generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001104 | PMC |
http://dx.doi.org/10.1016/j.jenvman.2019.109992 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!