Environmental pollutants generated by waste incineration plants, such as heavy metals and dioxin, make surrounding residents very sensitive to the construction of such facilities. This sensitivity and anxiety of residents may induce group events, which further leads to the emergence of social risks. Based on risk perception theory, a total of 320 questionnaires was designed and handed out to residents neighboring to Jiangqiao Waste Incineration Plant in Shanghai, China to detect the factors affecting risk attitude toward such plants. Using ordered logit model, it is found that there are four decisive factors including impact on health, information cognitive, objective characteristics, and the attitude of the neighbors. These factors have different influence on resident risk attitudes, in which the attitude of the neighbors is of most significance, followed by the economic-geography characteristics of residents, the information cognitive has minimal impact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2019.109946 | DOI Listing |
J Environ Manage
January 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
The cultivation of edible mushrooms plays a significant role in revitalizing numerous rural regions in China. However, this process generates a large amount of spent mushroom substrate (SMS). Traditional methods for handling SMS, such as random stacking and incineration, lead to resource waste and environmental pollution.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia.
Globally, the companies that make commercial use of bamboo culms produce different kinds of solid waste rich in lignocellulosic biomass, which in some cases is not used and is discarded in landfills or incinerated in the open air; losing the possibility of recovering them and using them in other productive sectors. The research objective were to produce a biochar from Guadua agustifolia Kunth sawdust, evaluate its potential environmental and agricultural use, obtain a biochar/TiO composite to inactivate Escherichia coli and use the biochar as a soil conditioner in medicinal plants producing phenolic compounds and flavonoids. Biochar composite (produced at 300 °C for 1 h) involved TiO at 450 °C for 1 h for inactivation of E.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
The unique properties of nanomaterials offer vast opportunities to advance sustainable processes. Incidental nanoparticles (INPs) represent a significant part of nanomaterials, yet their potential for sustainable applications remains largely untapped. Herein, we developed a simple strategy to harness INPs to upgrade the waste-to-resource paradigm, significantly reducing the energy consumption and greenhouse gas emissions.
View Article and Find Full Text PDFScientificWorldJournal
December 2024
Department of Mechanical Engineering, Dream Institute of Technology, Kolkata, 700104, India.
Sci Rep
December 2024
Prospecting and Environment Laboratory (Promediam), Universidad Politecnica de Madrid, Alenza 4, 28003, Madrid, Spain.
The aim of the study was to determine the scale of emission and airborne dispersion of selected pollutants (PM2.5, PM10, TVOC, HCHO) associated with the combustion of various types of municipal waste (MW), its mixed stream and separate fractions, in a household furnace, as compared to conventional (CF) and alternative (AF) fuels. We demonstrated that each type of fuel (AF, CF, AFw) combusted in a household furnace is a significant source of air pollutants, especially fine PM2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!