Accurate chromosome segregation requires bipolar attachment of kinetochores to spindle microtubules. A conserved surveillance mechanism, the spindle assembly checkpoint (SAC), responds to lack of kinetochore-microtubule connections and delays anaphase onset until all chromosomes are bipolarly attached [1]. SAC signaling fires at kinetochores and involves a soluble mitotic checkpoint complex (MCC) that inhibits the anaphase-promoting complex (APC) [2, 3]. The mitotic delay imposed by SAC, however, is not everlasting. If kinetochores fail to establish bipolar connections, cells can escape from the SAC-induced mitotic arrest through a process called mitotic slippage [4]. Mitotic slippage occurs in the presence of SAC signaling at kinetochores [5, 6], but whether and how MCC stability and APC inhibition are actively controlled during slippage is unknown. The PP1 phosphatase has emerged as a key factor in SAC silencing once all kinetochores are bipolarly attached [7, 8]. PP1 turns off SAC signaling through dephosphorylation of the SAC scaffold Knl1/Blinkin at kinetochores [9-11]. Here, we show that, in budding yeast, PP1 is also required for mitotic slippage. However, its involvement in this process is not linked to kinetochores but rather to MCC stability. We identify S268 of Mad3 as a critical target of PP1 in this process. Mad3 S268 dephosphorylation destabilizes the MCC without affecting the initial SAC-induced mitotic arrest. Conversely, it accelerates mitotic slippage and overcomes the slippage defect of PP1 mutants. Thus, slippage is not the mere consequence of incomplete APC inactivation that brings about mitotic exit, as originally proposed, but involves the exertive antagonism between kinases and phosphatases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2019.11.054 | DOI Listing |
FASEB J
December 2024
Laboratory of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
SUMOylation, the modification of proteins with a small ubiquitin-like modifier (SUMO), is known to regulate various cellular events, including cell division. This process is dynamic, with its status depending on the balance between SUMOylation and deSUMOylation. While the regulation of cell division by sentrin-specific protease (SENP) family proteins through deSUMOylation has been investigated, the role of another deSUMOylase, deSUMOylating isopeptidase 1 (DESI1), remains unknown.
View Article and Find Full Text PDFCell Biochem Funct
December 2024
Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
TNK2 is a ubiquitously expressed nonreceptor-type tyrosine kinase. TNK2 participates in tumorigenesis, and TNK2 activation has been found in various cancers; therefore, TNK2 is a promising target for cancer chemotherapy. While the TNK2 inhibitor XMD16-5 is highly selective, it inhibits cytokinesis at higher concentrations by targeting Aurora B kinase, a key enzyme for cell division.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Faculty of Medicine, Department of Medicine I, Medical Center, University of Freiburg, Freiburg, Germany.
In order to sustain genomic stability by correct DNA replication and mitosis and thus avoid malignant transformation of cells, the cell cycle is a strictly regulated process. Aberrant cell cycle regulation and defects in mitosis in malignant cells are targets of various cancer therapies. Cancer cells may survive antimitotic treatment due to mitotic slippage with a residual activity of the ubiquitin ligase anaphase-promoting complex (APC/C) and a continuous slow ubiquitin-proteasome-dependent cyclin B-degradation leading to mitotic exit.
View Article and Find Full Text PDFNature
November 2024
Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
Regulated start-codon selection has the potential to reshape the proteome through the differential production of upstream open reading frames, canonical proteins, and alternative translational isoforms. However, conditions under which start codon selection is altered remain poorly defined. Here, using transcriptome-wide translation-initiation-site profiling, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea.
Fludioxonil, an antifungal agent used as a pesticide, leaves a measurable residue in fruits and vegetables. It has been identified to cause endocrine disruption, interrupt normal development, and cause various diseases such as cancers. In this study, fludioxonil was examined for its effects on the development and metastasis of breast cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!