Objective: Osteoarthritis (OA) is a progressive joint disorder, with abnormal remodeling of subchondral bone linked to the disruption of cartilage metabolism. Nerves also play an important role in bone remodeling in OA progression, and vasoactive intestinal peptide (VIP), one of the neuropeptides, plays an important role in bone metabolism. The aim of this study was to analyze the expression pattern of VIP in subchondral bone, and its potential as a therapeutic target for OA progression.
Design: The pattern of VIP expression in the human tibia was histologically evaluated. The effect of VIP on angiogenesis was investigated using human umbilical vein endothelial cells (HUVECs). Knee OA was induced by the resection of the medial meniscotibial ligament in C57BL/6 mice. A VIP receptor antagonist was intraperitoneally administered postoperatively, and therapeutic effects were analyzed at 4 and 8 weeks.
Results: VIP expression in the subchondral bone increased as OA progressed in human tibia. VIP was also expressed in the vascular channels into the cartilage layer. The total length and branch points were significantly increased, due to the VIP receptor agonist in HUVECs. In OA mice, the VIP receptor antagonist could prevent cartilage degeneration and subchondral bone sclerosis. The Osteoarthritis Research Society International score in the VIP receptor antagonist group was significantly lower than in the control group.
Conclusion: VIP is involved in the progression of OA through its effect on subchondral bone sclerosis and angiogenesis. Inhibition of VIP signaling has the potential to be a therapeutic target to prevent OA progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jos.2019.11.010 | DOI Listing |
Orthopadie (Heidelb)
January 2025
Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, 55905, Rochester, MN, USA.
Subchondral insufficiency fractures of the knee (SIFK) are a relatively common cause of knee pain, particularly in middle-aged and older adults. The SIFK is a type of stress fracture that occurs when excessive and repetitive or supraphysiologic loads are applied to subchondral bone [1]. Historically, this type of fracture was termed spontaneous osteonecrosis of the knee (SONK) until advances in MRI identified underlying fractures as well as meniscal deficiency as likely attributable etiologies.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
Background: Osteoarthritis (OA) is a leading cause of pain, disability, and reduced mobility worldwide, characterized by metabolic imbalances in chondrocytes, extracellular matrix (ECM), and subchondral bone. Emerging evidence highlights the critical role of long non-coding RNAs (lncRNAs) in OA pathogenesis. This study focuses on lncRNA PTS-1, a novel lncRNA, to explore its function and regulatory mechanisms in OA progression.
View Article and Find Full Text PDFIntroduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease that causes chronic pain and joint dysfunction. However, the current understanding of TMJOA pathogenesis is limited and necessitates further research. Animal models are crucial for investigating TMJOA due to the scarcity of clinical samples.
View Article and Find Full Text PDFBiofabrication
January 2025
Department of Orthopaedics, Tangdu Hospital Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi 'an City, Xi'an, Shaanxi, 710038, CHINA.
Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injurie, a common orthopedic issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!