What can we know of the physiological regimes of ancient vertebrates? Essential to the exploration of this question are several epistemological tools: (i) a phylogenetic framework for interpreting whole animals and individual tissues, (ii) reliable knowledge of variation in populations and among climates and geographies, (iii) an understanding of phenotypic variation during ontogeny and between sexes, and (iv) a sense of the patterns of body size change, both phyletically and ontogenetically. Palaeobiologists are historically bound to a dichotomous set of terms developed long ago to describe the relatively depauperate living vertebrate fauna. This system sees only binary categories of five major groupings: the 'cold-blooded' fishes, amphibians, and reptiles, and the 'warm-blooded' birds and mammals. The integration of histoanatomical data with patterns of size, growth and phylogeny provides an opportunity to re-imagine not only vertebrate palaeophysiology, but vertebrate physiology in general. Here, we discuss how four 'signals' or 'influences' on bone tissues-phylogeny, ontogeny, mechanics and environment-can help to address these questions. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017439 | PMC |
http://dx.doi.org/10.1098/rstb.2019.0147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!