A potential anti-Human Immunodeficiency Virus (HIV) agent with novel mode of action is urgently needed to fight against drug resistance HIV. The HIV capsid protein is important for both late and early stages of the viral replication cycle and emerged as a promising target for the developing of small molecule inhibitors of HIV. We design a Pharmacophore and 3D Quantitative structure activity relationship (QSAR) model for HIV Capsid Protein inhibitors, which helps to identify overall aspects of molecular structure that govern activity and for the prediction of novel HIV Capsid inhibitors. The hypothesis was developed with a survival score of 3.6.The features, that is, two aromatic rings, one hydrophobic site and two acceptor regions were present in all the active compounds with good fitness score. Pharmacophore model was then validated by a partial least square and regression-based PHASE 3D QSAR cross-validation. The leave-n-out cross validation for test set (Q) of the hypothesis is 0.636, the standard deviation (SD) value is 0.338, and the variance ratio (F-test) value is 74.5. Hypothesis also showed a leave-n-out cross validation for training set (, 0.928). Interestingly, the predicted activity of true test set compounds was found in the close vicinity of their experimental activity suggesting the methodology used and models generated can be applied to identify potential new chemical entities with better HIV-1 capsid assembly inhibition.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2020.1715258 | DOI Listing |
PLoS Pathog
January 2025
Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404 USA.
Background: Lenacapavir is a highly potent first-in-class inhibitor of HIV-1 capsid approved for the treatment of heavily treatment-experienced (HTE) people with HIV-1 (PWH) harboring multidrug resistant (MDR) virus, in combination with an optimized background regimen (OBR). Resistance analyses conducted after 2 years of lenacapavir treatment in the phase 2/3 CAPELLA study are described.
Methods: CAPELLA enrolled viremic HTE PWH with resistance to 2 or more drugs per class in at least 3 of the 4 main drug classes.
PLoS Pathog
January 2025
Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America.
Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA. Electronic address:
One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!