Herein, we present a modular approach to pristine angularly fused planar acenes. The approach includes the Pd-catalyzed fusion of several building blocks and implements a dehydrative π-extension (DPEX) reaction as a key step enabling facile access to diverse two-dimensional acenes. The scope was demonstrated on nine examples with up to quantitative yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.9b04382 | DOI Listing |
Cogn Affect Behav Neurosci
January 2025
Department of Psychological Sciences, Rice University, Houston, TX, 77005, USA.
In a sequence, at least two aspects of information-the identity of items and their serial order-are maintained and supported by distinct working memory (WM) capacities. Verbal serial order WM is modulated by spatial processing, reflected in the Spatial Position Association of Response Codes (SPoARC) effect-the left-beginning, right-end positional association between space and serial position of verbal WM memoranda. We investigated the individual differences in this modulation with both behavioral and neurobiological approaches.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
January 2025
1School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; email:
Production of polymer material goods on-demand is a recurring science fiction element, but advances in chemistry and engineering have pushed it closer to reality. Experienced at a hobby scale by 3D printing enthusiasts and at an industrial level through rapid prototyping and modular manufacturing, the approach is on its way to further flexibility and high-performance material production. We review the advances in on-demand materials design as well as manufacturing, using examples in space exploration and sustainability, because these are cases where the value proposition for rapid changes in materials is strong.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFSci Robot
January 2025
Department of Bioengineering, Imperial College of London, London, UK.
Despite the advances in bionic reconstruction of missing limbs, the control of robotic limbs is still limited and, in most cases, not felt to be as natural by users. In this study, we introduce a control approach that combines robotic design based on postural synergies and neural decoding of synergistic behavior of spinal motoneurons. We developed a soft prosthetic hand with two degrees of actuation that realizes postures in a two-dimensional linear manifold generated by two postural synergies.
View Article and Find Full Text PDFMany protein bioconjugation strategies focus on the modification of lysine residues owing to the nucleophilicity of their amine side-chain, the generally high abundance of lysine residues on a protein's surface and the ability to form robustly stable amide-based bioconjugates. However, the plethora of solvent accessible lysine residues, which often have similar reactivity, is a key inherent issue when searching for regioselectivity and/or controlled loading of an entity. A relevant example is the modification of antibodies and/or antibody fragments, whose conjugates offer potential for a wide variety of applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!