Plasmonic nanomaterials are excellent and promising building blocks for information encoding and decoding. However, the positioning of multiplexed nanomaterials into recognizable structures remains a major challenge in nanotechnology. Herein, we developed a novel method for fabricating diversified nanostructures through surface charge inversion from amino-modified substrates to carboxyl-modified ones, as well as the corresponding electrostatic-induced assembly of metal nanoparticles. Under optimal conditions, the selected gold nanospheres (NSs) and peanut-like gold nanorods were successively located into patterns of spaced lines on the same substrate. Due to their unique optical properties, these two types of designed nanoarrays exhibited distinct color contrast and spectrum difference under dark-field scattering microscopy. Furthermore, this general strategy can be extended to wide ranges of nanoparticles with different morphologies and compositions for other multifunctional and high-demanding encoding applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b17530 | DOI Listing |
Micromachines (Basel)
January 2025
Power Solutions Group, Onsemi, Scottsdale, AZ 85250, USA.
Trench MOS Barrier Schottky (TMBS) rectifiers offer superior static and dynamic electrical characteristics when compared with planar Schottky rectifiers for a given active die size. The unique structure of TMBS devices allows for efficient manipulation of the electric field, enabling higher doping concentrations in the drift region and thus achieving a lower forward voltage drop (VF) and reduced leakage current (IR) while maintaining high breakdown voltage (BV). While the use of trenches to push electric fields away from the mesa surface is a widely employed concept for vertical power devices, a significant gap exists in the analytical modeling of this effect, with most prior studies relying heavily on computationally intensive numerical simulations.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Lipid A, a well-known saccharolipid, acts as the inner lipid-glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada.
Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
The spiral generator, based on the principle of the electric field vector inversion, is capable of delivering repetitive high-voltage nanosecond pulses in the commercial portable pulsed x-ray source and gas switch trigger source. However, the spiral generator suffers from extremely low output efficiency, which significantly affects the compactness and accelerates the insulation film breakdown at electrode foil edges since the high charging voltage is required. A novel output efficiency improvement method for the spiral generator was proposed, implementing the permalloy film inside the passive layer to optimize internal voltage wave propagation processes during the pulser erection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!