Multiple heavy metal-resistant bacterium, Micrococcus luteus strain AS2, was isolated from industrial waste water of District Sheikhupura, Pakistan. The isolated bacterium showed minimum inhibitory concentrations of 55 and 275 mM against arsenite and arsenate. The bacterial strain also showed resistance against other heavy metal ions, i.e., lead, cadmium, chromium, mercury, nickel, and zinc, apart from arsenic. The optimum temperature and pH were 37 °C and 7, respectively. The antioxidant enzymes such as catalase were significantly increased under arsenite stress. The increase in 43.9% of GSH/GSSG and 72.72% of non-protein thiol was determined under15 mM arsenite stress. Bacterial genome was sequenced through Illumina and Nanopore and genes related to arsenic and other heavy metals were identified and blast (tblastx) on NCBI. Through scanning electron microscopy, no morphological changes were observed in bacterial cells under arsenite stress. The peaks appeared in EDX showed that there is surface adsorption of arsenite in bacterial cell while it was confirmed from Fourier transformed infrared spectroscopy analysis that there is some interaction between arsenite and functional groups present on the surface of bacterial cell. The SDS-PAGE analysis of whole-cell proteins under 15 mM arsenite stress clearly revealed that there is upregulation of some proteins in ranged of 60 to 34 kDa. The bioremediation efficiency (E) of bacterial biomass was 72% after 2 h and 99% after 10 h. The bioremediation efficiency of bacterial biomass is an indicator for the isolated bacterium to employ as a potential candidate for the amelioration of sites contaminated with arsenic.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-020-10351-2DOI Listing

Publication Analysis

Top Keywords

arsenite stress
16
multiple heavy
8
heavy metal-resistant
8
micrococcus luteus
8
luteus strain
8
strain as2
8
as2 isolated
8
isolated industrial
8
industrial waste
8
waste water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!