Monodisperse porous silica microspheres were functionalized with the iminodiacetic acid/copper(II) complex and then evaluated as a group-specific peroxidase-mimicking nanozyme for colorimetric determination of histidine-tagged (His-tagged) proteins. The green fluorescent protein (GFP) was selected as a typical His-tagged protein. The specificity for GFP and the peroxidase-like activity for the selected substrate were obtained by immobilizing the complex on the porous microspheres. The modified microspheres were also evaluated as a group specific immobilized metal affinity chromatography (IMAC) sorbent for the purification of GFP from Escherichia coli extract. The peroxidase-like activity of the microspheres was inhibited by the GFP adsorbed onto the microspheres due to the interaction of His-tagged protein with the immobilized Cu(II) complex. Ortho-phenylenediamine is used as a substrate for the enzyme mimic. The photometric response (measured at 416 nm) is linear in the 9.0-92 μg·mL GFP concentration range in E. coli lysate. The limit of detection is 6.9 μg·mL. Graphical abstractSchematic representation of metal affinity chromatography-based colorimetric determination of histidine-tagged proteins using silica microspheres functionalized with iminodiacteic acid/copper (II) complex as a peroxidase mimic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-019-4087-0 | DOI Listing |
Small
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
The development of monodisperse hybrid silica microspheres with highly regular pore structure and uniform distribution of functional groups have significant value in the biomolecular separation field. In this work, the short range ordered pore channels are precisely constructed onto the non-porous silica microsphere surface by a bi-phase assembly method, and the cylindrical silica channel introduced a plethora of vinyl groups by "one-pot" co-condensation to form vinyl hybrid silica shell. As hydrophilic interaction chromatography (HILIC) stationary phase, the vinyl hybrid core-shell silica microsphere is simply modified with zwitterion glutathione (SiO@SiO-GSH), in which the HILIC enrichment process is significantly shortened due to its specific porous characteristics.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
Mycotoxins are detectable in 60-80% of food crops, posing significant threats to human health and food security, and causing substantial economic losses. Most mitigation approaches focus on detecting mycotoxins with standard methods based on liquid chromatography coupled with mass spectrometry (LC-MS). Typical MS methods require extensive sample preparation and clean-up due to the matrix effect, followed by time-consuming LC separation, complicating the analysis process and limiting analytical throughput.
View Article and Find Full Text PDFMolecules
December 2024
Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland.
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use.
View Article and Find Full Text PDFTalanta
December 2024
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China. Electronic address:
Staphylococcus aureus (S. aureus) has been identified as a indicator of food contamination. In this study, a sensitive and accurate biosensor strategy for S.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Materials and Chemistry and State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, 59, Middle Qinglong Avenue, Mianyang, 621010, P. R. China.
The intrinsic compromise between strength and toughness in composite epoxy resins significantly constrains their practical applications. In this study, a novel strategy is introduced, leveraging interfacial π-π stacking interactions to induce the "rolling behavior" of microsphere fillers, thereby facilitating efficient energy dissipation. This approach is corroborated through theoretical simulations and experimental validation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!