Purpose: The dynamic hip screw (DHS) is widely used for fixing intertrochanteric femur fractures. A porous bionic DHS was developed recently to avoid the stress concentration and risk of post-operative complications associated with titanium alloy DHSs. The purpose of this study was to compare the effects of traditional titanium alloy, bionic titanium alloy, and bionic magnesium alloy DHS fixation for treatment of intertrochanteric fractures using finite element analysis.
Methods: A three-dimensional model of the proximal femur was established by human computed tomography images. An intertrochanteric fracture was created on the model, which was fixed using traditional and porous bionic DHS, respectively. The von Mises stress, maximum principal stress, and minimum principal stress were calculated to evaluate the effect of bone ingrowth on stress distribution of the proximal femur after fixation.
Results: Stress concentration of the bionic DHS model was lower compared with traditional DHS fixation models. The von Mises stress, maximum principal stress, and minimum principal stress distributions of bionic magnesium alloy DHS models improved, along with simulation of the bone healing process and magnesium alloy degeneration, assumed to biodegrade completely 12 months post-operatively. The distribution of maximum principal stress in the secondary tension zone of the bionic DHS model was close to the intact bone. In the minimum principal stress, the region of minimum stress value less than - 10 MPa was significantly improved compared with traditional DHS models.
Conclusion: The bionic magnesium alloy DHS implant can improve the stress distribution of fractured bone close to that of intact bone while reducing the risk of post-operative complications associated with traditional internal fixations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00264-019-04478-9 | DOI Listing |
Neurosci Biobehav Rev
January 2025
Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University.
The role of prolactin in sleep regulation has been the subject of extensive research over the past 50 years, resulting in the identification of multiple, disparate functions for the hormone. Prolactin demonstrated a characteristic circadian release pattern with elevation during dark and diminution during light. High prolactin levels were linked to non-rapid eye movement sleep and electroencephalogram delta activity in humans.
View Article and Find Full Text PDFBMC Nurs
January 2025
Department of Clinical Nutrition, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China.
Background: Nurses serving in infectious disease ward represent a distinct occupational group that has attracted considerable attention following epidemic outbreaks. However, prior to this study, no research had delved into the underlying mechanism linking anxiety to burnout symptoms among infectious disease nurses. This study aimed to explore investigate the association between anxiety and burnout among nurses working in such environments and scrutinized the mediating role of perceived stress and the moderating influence of resilience on the principal relationship.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy. Electronic address:
Rotational grazing (RG) could be a valid alternative to continuous grazing (CG) in Mediterranean extensive pastures to fight land degradation. This study aimed to compare soil quality under RG and CG management, in paired RG-CG Portuguese pasture areas under strong aridity stress, with RG sites converted from CG management in 2018. Soils were sampled in 2022, at 10 cm depth, over 71 ha of RG and 37 ha of CG pastures, subdivided in 16 and 10 sampling plots, respectively.
View Article and Find Full Text PDFPLoS One
January 2025
Polish Academy of Sciences, Institute of Plant Genetics, Poznan, Poland.
The increasing cultivation of perennial C4 grass known as Miscanthus spp. for biomass production holds promise as a sustainable source of renewable energy. Unlike the sterile triploid hybrid of M.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.
Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!