The objective of the study was to explore the effects of behavioral and cognitive development in rats after prenatal exposure to 1800 and 2400 MHz radiofrequency fields. Pregnant female rats were exposed to radiofrequency fields beginning on the 21st day of pregnancy. The indicators of physiological and behavioral development were observed and measured in the offspring rats: Y maze measured at 3-weeks postnatal, open field at 7-weeks postnatal, and the expression of N-methyl-D-aspartate receptors (NMDARs) measured by reverse transcription-PCR in the hippocampus at 9-weeks postnatal. The body weight of the 1800 MHz group and the 1800 MHz + WiFi group showed a downward trend. The eye opening time of newborn rats was much earlier in the WiFi group than in the control group. Compared to the control group, the overall path length of the 1800 MHz + WiFi group was shortened and the stationary time was delayed. The path length of the WiFi group was shortened and the average velocity was increased in the error arm. The 1800 MHz + WiFi group displayed an increased trend in path length, duration, entry times and stationary time in the central area. In both the 1800 MHz + WiFi and WiFi groups, NR2A and NR2B expression was down-regulated, while NR2D, NR3A and NR3B were up-regulated. Moreover, NR1 and NR2C in the WiFi group were also up-regulated. Prenatal exposure to 1800 MHz and WiFi radiofrequency may affect the behavioral and cognitive development of offspring rats, which may be associated with altered mRNA expression of NMDARs in the hippocampus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246068PMC
http://dx.doi.org/10.1093/jrr/rrz097DOI Listing

Publication Analysis

Top Keywords

behavioral cognitive
12
cognitive development
12
prenatal exposure
12
radiofrequency fields
12
1800 mhz + wifi group
12
wifi group
12
path length
12
group
9
development rats
8
rats prenatal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!