Biophysical changes caused by altered MUC13 expression in pancreatic cancer cells.

Micron

Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States. Electronic address:

Published: March 2020

Background: Pancreatic cancer is one of the most lethal cancers in the United States. This is partly due to the difficulty in early detection of this disease as well as poor therapeutic responses to currently available regimens. Our previous reports suggest that mucin 13 (MUC13, a transmembrane mucin common to gastrointestinal cells) is aberrantly expressed in this disease state, and has been implicated with a worsened prognosis and an enhanced metastatic potential in PanCa. However, virtually no information currently exists to describe the biophysical ramifications of this protein.

Methods: To demonstrate the biophysical effect of MUC13 in PanCa, we generated overexpressing and knockdown model cell lines for PanCa and subsequently subjected them to various biophysical experiments using atomic force microscopy (AFM) and cellular aggregation studies.

Results: AFM-based nanoindentation data showed significant biophysical effects with MUC13 modulation in PanCa cells. The overexpression of MUC13 in Panc-1 cells led to an expected decrease in modulus, and a corresponding decrease in adhesion. With MUC13 knockdown, HPAF-II cells exhibited an increased modulus and adhesion. These results were confirmed with altered cell-cell adhesion as seen with aggregation assays.

Conclusions: MUC13 led to significant biophysical changes in PanCa cells and which exhibited characteristic phenotypic changes in cells demonstrated in previous work from our lab. This work gives insight into the use of biophysical measurements that could be used to help diagnose or monitor cancers as well as determine the effects of genetic alterations at a mechanical level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014956PMC
http://dx.doi.org/10.1016/j.micron.2019.102822DOI Listing

Publication Analysis

Top Keywords

biophysical changes
8
pancreatic cancer
8
panca cells
8
cells exhibited
8
biophysical
7
muc13
7
cells
7
panca
5
changes caused
4
caused altered
4

Similar Publications

Functional nanoplatform for modulating cellular forces to enhance antitumor immunity via mechanotransduction.

J Control Release

January 2025

Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:

Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction.

View Article and Find Full Text PDF

When engaged in dynamic or continuous movements, action initiation involves modifying an ongoing motor program rather than initiating it from rest. Event-related theta synchronization over sensorimotor areas is a neurophysiological marker for modifying motor programs. We used electroencephalography (EEG) to examine how task complexity and age affect event-related synchronization (ERS) in the theta band during a dynamic bimanual, visuomotor pinch force task.

View Article and Find Full Text PDF

Hyperpolarized-C magnetic resonance imaging (HP-C MRI) was used to image changes in C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain C-pyruvate, C-lactate and C-bicarbonate production was imaged in healthy volunteers (N = 6, ages 24-33) for the two conditions using two separate hyperpolarized C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation.

View Article and Find Full Text PDF

Cell wall extensibility is a key biophysical characteristic that defines the rate of plant cell growth. It depends on the wall structure and is controlled by numerous proteins that cut and/or (re)form links between the wall constituents. Cell wall extensibility is currently estimated by different in vitro biomechanical tests.

View Article and Find Full Text PDF

: Peripheral artery disease (PAD) is a prevalent vascular condition characterized by arterial narrowing, which impairs blood flow and manifests as intermittent claudication, a pain or cramping sensation induced by physical activity or ambulation. Walking distance is a crucial clinical indicator of peripheral artery disease, and it correlates with the disease severity and risk of mortality. It reflects the severity of the disease, with reduced mobility indicating an increased risk of morbidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!