Inhalable particles can influence the interfacial behavior of pulmonary surfactant (PS) resulting in various pulmonary diseases. However, the effects of actually airborne particles on the interfacial behavior of PS and its role in the alteration for soluble metal fraction in particles are entirely unexplored. Herein, we investigated the interaction of PS extracted from porcine lungs with smelting soot fine particles as a model of inhaled heavy metal-rich particles. Our results showed that the phase behavior and foamability of PS were obviously altered in the presence of smelting soot fine particles. In addition, the soluble heavy metals in smelting soot fine particles notably increased in the presence of PS as compared to that of saline solution. Further experiments conducted by adding PS's major components (dipalmitoylphosphatidylcholine, DPPC; bovine serum albumin, BSA) demonstrated that comparison of DPPC, adsorbed BSA is beneficial for the dissolution of heavy metals in smelting soot fine particles. Dynamic light scattering experiments verified that the well dispersion of smelting soot fine particles in the presence of BSA may be responsible for the higher solubility of heavy metals. These findings indicate that PS's interfacial behavior change and PS-enhanced solubilization release of metal components may increase the potentially pulmonary risk in the exposure of airborne fine particles enriched with heavy metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.125702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!