Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A cost-effective and eco-friendly engineering method to improve biochar's physicochemical and sorption performance is critical in various environmental applications. In this study, micro-nano-engineered nitrogenous biochars derived from cow bone meal pyrolyzed at different temperatures and were engineered with the assistance of a ball-milling technique. The ball-milled bone biochars were natural composites combined with plant biochars and hydroxyapatite components on the micro-nanoscale. Both the micropore area and the external specific surface area of the bone biochars were significantly improved after ball-milling. The sorption capacities for heavy metal ions were heavy metal ions were MBC-600 > MBC-450 > BC-600 > MBC-300 > BC-450 > BC-300, consistent with the variation tendency in the specific surface areas of the bone biochars. The adsorption capacities of MBC-600 for Cd(II), Cu(II) and Pb(II) were 165.77, 287.58 and 558.88 mg/g, respectively (T 298K, pH 5.0), representing increases of 93.91.%, 75.56% and 64.61% compared with the un-milled preparation. Surface complexation, cation exchange, chemical precipitation, electrostatic interaction and cation-π bonding were responsible for the removal of heavy metal ions by bone biochar materials. Taken together, the results show that micro-nano-engineered nitrogenous bone biochar prepared using ball-milling technology is a promising material for the remediation of heavy metals-bearing aquatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121980 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!