Tracing the geographical origin of rice by stable isotopic analyses combined with chemometrics.

Food Chem

Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Published: May 2020

Multivariate stable isotope analysis combined with chemometrics was used to investigate and discriminate rice samples from six rice producing provinces in China (Heilongjiang, Jilin, Jiangsu, Zhejiang, Hunan and Guizhou) and four other Asian rice producing countries (Thailand, Malaysia, Philippines, and Pakistan). The stable isotope characteristics were analyzed for rice of different species cultivated with varied farming methods at different altitudes and latitudes/longitudes. The index groups of δC, δN, δO, Pb and Pb were screened and established for the selected samples with different geographical features by means of principal component analysis (PCA) and discriminant analysis (DA), which would provide a sound technical solution for rice traceability and serve as a template for further research on the traceability of other agricultural products, especially plant-derived products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2019.126093DOI Listing

Publication Analysis

Top Keywords

combined chemometrics
8
stable isotope
8
rice producing
8
rice
6
tracing geographical
4
geographical origin
4
origin rice
4
rice stable
4
stable isotopic
4
isotopic analyses
4

Similar Publications

The occurrence of off-flavor in osmanthus absolutes has emerged as a significant concern that could hinder its broad market acceptance and associated economic development. In this study, key off-flavor molecules in industrial osmanthus absolute were identified through sensomics and chemometric approaches. A group of 10 off-flavor (OF) samples, eliciting smoky/phenolic, sweaty/sour, and spicy odors, were compared with 10 pleasant aroma (PA) samples through various analyses, including overall aroma assessment, comprehensive chemical profiling, aroma extract dilution analysis (AEDA), and orthogonal partial least-squares-discriminant analysis (OPLS-DA).

View Article and Find Full Text PDF

Mineral and trace element analysis of non-conventional food plants using ICP OES and chemometric techniques.

Food Chem

January 2025

Group of Alternative Analytical Approaches (GAAA), Bioenergy Research Institute (IPBEN), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-060 São Paulo State, Brazil; National Institute of Alternative Technologies for Detection Toxicological Assessment and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, 14800-060 São Paulo State, Brazil. Electronic address:

Non-conventional food plants (or non-conventional edible plants) have the potential to serve as an excellent nutritional alternative while promoting the circular economy. Given the nutritional potential of non-conventional food plants, this study aimed to investigate and determine the composition of these plants using inductively coupled plasma optical emission spectroscopy (ICP OES) combined with chemometric techniques. In this context, the following non-conventional food plant species were evaluated: serralha (Sonchus oleraceus), two species of ora-pro-nóbis, Pereskia grandifolia and Pereskia aculeata, peixinho (Nematanthus gregarius), alfavaca (Ocimum basilicum), taioba (Xanthosoma sagittifolium), capeba (Pothomorphe umbellata), tranchagem (Plantago major), and bardana (Arctium lappa).

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a common malignancy and generally develops from liver cirrhosis (LC), which is primarily caused by the chronic hepatitis B (CHB) virus. Reliable liquid biopsy methods for HCC screening in high-risk populations are urgently needed. Here, we establish a porous silicon-assisted laser desorption ionization mass spectrometry (PSALDI-MS) technology to profile metabolite information hidden in human serum in a high throughput manner.

View Article and Find Full Text PDF

Quantification of modal mineralogy in molybdenite-bearing drill-core samples by laser-induced breakdown spectroscopy.

Heliyon

January 2025

Laboratorio de Trazas elementales y Especiación, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.

Quantification of modal mineralogy in drill-core samples is crucial for understanding the geology and metal deportment in a mining operation. This study assesses conventional procedures to quantify modal mineralogy, that includes an initial drill-core logging, followed by petrographic descriptions and SEM-based automated mineralogy analyses performed in selected regions of interest, against a novel approach using laser-induced breakdown spectroscopy (LIBS). Our proposed methodology aims to quantify the modal mineralogy directly in a drill-core sample, avoiding previous stages of selection and preparation of samples.

View Article and Find Full Text PDF

Two-dimensional liquid chromatography (2D-LC) separation systems, based on two independent columns with different separation mechanisms, have exhibited strong resolving power for complex samples. Therefore, in recent years, the exceptional resolution of 2D-LC has significantly advanced the chemical separation of natural products, such as complex herbs, greatly facilitating their qualitative and quantitative analysis. This paper aims to review the latest strategies of 2D-LC in the quantitative analysis of complex chemical compositions in natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!