Diffusion coefficient (D) is important to evaluate the performance of passive samplers and to monitor the concentration of chemicals effectively. Herein, we developed a polyparameter linear free energy relationship (pp-LFER) model and a quantitative structure-property relationship (QSPR) model for the prediction of diffusion coefficients of hydrophobic organic contaminants (HOCs) in low density polyethylene (LDPE). A dataset of 120 various chemicals was used to develop both models. The pp-LFER model was developed with two descriptors (V and E) and the statistical parameters of the model showed satisfactory results. As a further exploration of the diffusion behavior of the compounds, a QSPR model with five descriptors (ETA_Alpha, ASP-6, IC1, TDB6r and ATSC2v) was constructed with adjusted determination coefficient (R) of 0.949 and cross-validation coefficient (Q) of 0.941. The regression results indicated that both models had satisfactory goodness-of-fit and robustness. This study proves that pp-LFER and QSPR approaches are available for the prediction of log D values for the hydrophobic organic compounds within the applicability domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.110179 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!