Exposure to the environmental pollutants organotins is of toxicological concern for the marine ecosystem and sensitive human populations, including pregnant women and their unborn children. Using a placenta cell model, we investigated whether organotins at nanomolar concentrations affect the expression and activity of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). 11β-HSD2 represents a placental barrier controlling access of maternal glucocorticoids to the fetus. The organotins tributyltin (TBT) and triphenyltin (TPT) induced 11β-HSD2 expression and activity in JEG-3 placenta cells, an effect confirmed at the mRNA level in primary human trophoblast cells. Inhibition/knock-down of retinoid X receptor alpha (RXRα) in JEG-3 cells reduced the effect of organotins on 11β-HSD2 activity, mRNA and protein levels, revealing involvement of RXRα. Experiments using RNA and protein synthesis inhibitors indicated that the effect of organotins on 11β-HSD2 expression was direct and caused by increased transcription. Induction of placental 11β-HSD2 activity by TBT, TPT and other endocrine disrupting chemicals acting as RXRα agonists may affect placental barrier function by altering the expression of glucocorticoid-dependent genes and resulting in decreased availability of active glucocorticoids for the fetus, disturbing development and increasing the risk for metabolic and cardiovascular complications in later life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2020.01.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!