Grafting of wool fibers through disulfide bonds: An advanced application of S-protected thiolated starch.

Int J Biol Macromol

Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria. Electronic address:

Published: March 2020

The purpose of this study is to develop a potential pathway for grafting polymers onto wool fibers based on thiol-disulfide exchange reactions. S-protected thiolated starch (PTS) was synthesized by coupling 3-(2-pyridyldithio) propanoic acid to starch through esterification, resulting in 417.3 ± 15.1 μmol ligand binding to 1 g of starch. PTS was labelled with fluorescein isothiocyanate (FITC) prior to grafting. Wool fibers were preactivated by raising the amount of thiol groups utilizing mild reducing agents. The highest degree of preactivation on the surface of wool fibers was achieved by a 0.2% (w/v) sodium borohydride and 1.5% (w/v) sodium bisulfite mixture pH 5.0 resulting in 182.6 ± 8.7 μmol thiol groups per gram of fibers. Different incubation times and ratios between FITC-labelled PTS and wool fibers were investigated. A graft yield of 58.5% was achieved at a ratio of 1:1.5 (w/w) between wool fibers and FITC-labelled PTS within 18 h of incubation. Successful coating of PTS on wool fibers was confirmed by confocal imaging, scanning electron microscopy and FT-IR. Mechanical properties of grafted wool fibers were tested regarding elongation and tensile strength. These results provide evidence for the potential of S-protected thiolated starch as a superior coating material for wool fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.01.075DOI Listing

Publication Analysis

Top Keywords

wool fibers
36
s-protected thiolated
12
thiolated starch
12
fibers
10
grafting wool
8
wool
8
starch pts
8
thiol groups
8
w/v sodium
8
fitc-labelled pts
8

Similar Publications

Wool Fabric with an Improved Durable Biological Resistance Using a Coumarin Derivative.

ACS Appl Bio Mater

January 2025

Proteinic and Man-made Fibres Department, Textile Research and Technology Institute, National Research Centre, Cairo, Dokki, 12622, Egypt.

Wool is the most widely used proteinic natural fiber in the clothing industry by virtue of its versatile properties. Unfortunately, wool, as a natural fiber, is more susceptible to attack by microorganisms and moths, which may cause harm to the fiber and human health. That is why the antimicrobial and mothproof finishing of natural textiles is of prime importance to the textile and clothing industry.

View Article and Find Full Text PDF

Membranes have been used as versatile tools for the separation of various natural products; however, the selective separation of structural analogs of natural products using membranes remains challenging. In this study, biocomposite membranes based on poly(ionic liquids) and different natural fibers (jute, cotton, or wool) were successfully prepared. Natural fibers can regulate the microstructure and improve the mechanical properties of membranes.

View Article and Find Full Text PDF

Investigation of Damping Properties of Natural Fiber-Reinforced Composites at Various Impact Energy Levels.

Polymers (Basel)

December 2024

Department of Automotive Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey.

Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer foam core layered composites were produced for the automotive industry.

View Article and Find Full Text PDF

Experimental study on hydrophysical properties and slope planting of ecological composite material solidified loess.

J Environ Manage

January 2025

School of Geological Engineering and Geomatics, Chang'an University, Xi'an, 710054, China. Electronic address:

The construction of engineering projects in the Chinese Loess Plateau has resulted in large areas of exposed slopes, increasing the risk of soil erosion. Restoring the slope ecosystem is an effective means to reduce soil erosion, prevent soil and water loss, and maintain slope stability. Ecological slope protection using bio-gum solidified fiber-reinforced loess (GFSL) has been proven to achieve good vegetation restoration effects, but there remains a problem of low vegetation coverage in the early stage of protection.

View Article and Find Full Text PDF

Screened of long non-coding RNA related to wool development and fineness in Gansu alpine fine-wool sheep.

BMC Genomics

January 2025

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.

Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the same time, lncRNA participates in numerous biological processes in animal production. In this research, we conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!