A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monitoring land surface thermal environments under the background of landscape patterns in arid regions: A case study in Aksu river basin. | LitMetric

Monitoring land surface thermal environments under the background of landscape patterns in arid regions: A case study in Aksu river basin.

Sci Total Environ

State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Published: March 2020

Land surface temperature (LST) is defined as an important indicator in the formation and evolution of climate. In some cases, changes in landscape patterns affect LST, even more than the contribution of greenhouse gases. Although much work has been done with respect to the correlations between urban development and thermal environment dynamics, the related questions regarding relationships between LST and landscape patterns in arid regions are not thoroughly considered. Understanding these questions is important in climate change and land planning. The objective of this study was to explore the spatiotemporal variations of LST by distribution index (DI) and Mann-Kendall mutation analysis method and to quantify the relationships between landscape patterns, climatic factors, topographic factors, and the land surface thermal environment (LSTE) by the ordinary linear regressions (OLS) model. The landscape patterns dataset, which was validated by a field trip, was extracted from the Land satellite (Landsat) TM/OLI images by the Random Forest methodology in ArcGIS software. The MODIS/LST product was validated by the "Monthly dataset of China's surface climate" and a field trip. Annual LST increased by 0.54 °C (23.15 °C in 2000 and 23.79 °C in 2015). In different landscape patterns, the percentage of areas with a high level of LST showed a significant difference. In barren land, the highest area proportion for the high LST level was larger than in other landscape patterns. Meanwhile, the area of low LST was mainly concentrated in water bodies. Considerable changes have occurred in landscape patterns, in which the most noteworthy was cultivated land encroaching on grass land (3708.44 km). The composition of landscape patterns was more important than distribution in determining the region's LST. These findings provide valuable information for land planners dealing with climate change and ecosystem conservation in arid regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.136336DOI Listing

Publication Analysis

Top Keywords

landscape patterns
36
land surface
12
arid regions
12
landscape
9
patterns
9
lst
9
surface thermal
8
patterns arid
8
land
8
thermal environment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!