A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative genomic and transcriptomic analyses reveal different pathogenicity-related genes among three eucalyptus fungal pathogens. | LitMetric

Comparative genomic and transcriptomic analyses reveal different pathogenicity-related genes among three eucalyptus fungal pathogens.

Fungal Genet Biol

Laboratory of Forest Pathology, Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, Brazil. Electronic address:

Published: April 2020

Ceratocystis fimbriata is an important plant pathogen known to cause Ceratocystis Wilt (CW), a prevalent fungal disease known to affect Eucalyptus spp. plantations in Brazil. To better understand the molecular mechanisms related to pathogenicity in eucalyptus, we generated a high-quality assembly and annotation of the Ce. fimbriata LPF1912 isolate (LPF1912) genome, as well as the first transcriptome of LPF1912 from 16 eucalyptus clones at three infection incubation periods (12, 18, and 24 h). The LPF1912 genome assembly contains 805 scaffolds, totaling 31.8 Mb, with 43% of the genome estimated to be coding sequence comprised of 7,390 protein-coding genes of which 626 (8.5%) were classified as secreted proteins, 120 ribosomal RNAs, and 532 transfer RNAs. Comparative genomic analysis among three eucalyptus fungal pathogens (Ce. fimbriata, Ce. eucalypticola, and Calonectria pseudoreteaudii), showed high similarity in the proteome (21.81%) and secretome (52.01%) of LPF1912 and Ce. eucalypticola. GO annotation of pathogenicity-related genes of LPF1912 and Ce. eucalypticola, revealed enrichment in cell wall degrading enzymes (CWDEs), and lipid/cutin metabolism for Ca. pseudoreteaudii. Additionally, a transcriptome analysis between resistant and susceptible eucalyptus clones to CW infection indicated that a majority (11) of LPF1912 differentially expressed genes had GO terms associated with enzymatic functions, such as the polygalacturonase gene family, confirming the crucial role of CWDEs for Ce. fimbriata pathogenicity. Finally, our genomic and transcriptomic analysis approach provides a better understanding of the mechanisms involved in Ce. fimbriata pathogenesis, as well as a framework for further studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2019.103332DOI Listing

Publication Analysis

Top Keywords

comparative genomic
8
genomic transcriptomic
8
pathogenicity-related genes
8
three eucalyptus
8
eucalyptus fungal
8
fungal pathogens
8
lpf1912 genome
8
eucalyptus clones
8
lpf1912 eucalypticola
8
lpf1912
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!