Background Osteoarthritis (OA) is the most prevalent joint disease and a common cause of joint pain, functional loss, and disability. The severity of this disease is always associated with increased levels of proinflammatory cytokines, which play an important role in cartilage damage, synovitis, and other damage to joint tissues. The discovery that many soluble mediators such as cytokines or prostaglandins can increase the production of matrix metalloproteinases by chondrocytes led to the first steps of an inflammatory state. Several studies show that cytokines, such as interleukin 1ß, have a major role in the development of inflammation that occurs in these joints. The use of glucosamine as an adjuvant to meloxicam therapy is expected to inhibit the development of inflammatory OA. Methods The OA model in rat was induced by single injection of intraarticular monosodium iodoacetate (MIA). The development of OA was observed for 21 days. Furthermore, the evaluation of glucosamine potency as an adjuvant of meloxicam therapy for reducing IL-1ß was done by combined treatment at a low dose of meloxicam 1 mg/kg BW with glucosamine at a dose of 125, 250, or 500 mg/kg BW orally for 28 days. Response to hyperalgesia and knee joint diameter was measured on days 0, 7, 14, 21, 28, 35, 42, and 49. IL-1ß levels were measured on day 21 and day 49 after MIA injection. Results MIA injection successfully induced OA as marked by a significant difference in the time of latency to heat stimulus (p < 0.01) and a significant increase in joint diameter (p < 0.01). On day 21, IL-1ß levels showed a significant decrease in MIA injection (p = 0.05). The administration of meloxicam and glucosamine did not induce significant decrease in knee joint diameter (p > 0.10), but was able to significantly increase the latency time to heat stimulus (p < 0.01). IL-1ß levels also showed a significant decrease after administering a combination of glucosamine and meloxicam (p < 0.01). Conclusions Taken together, the use of glucosamine as an adjuvant in meloxicam therapy may be caused by the synergistic mechanism of meloxicam for the attenuation of OA development through systemically reducing IL-1ß.

Download full-text PDF

Source
http://dx.doi.org/10.1515/jbcpp-2019-0332DOI Listing

Publication Analysis

Top Keywords

adjuvant meloxicam
16
glucosamine adjuvant
12
meloxicam therapy
12
joint diameter
12
il-1ß levels
12
mia injection
12
meloxicam
8
reducing il-1ß
8
knee joint
8
heat stimulus
8

Similar Publications

Article Synopsis
  • - Hemorrhage is the main cause of preventable death in trauma situations, leading to military and civilian advancements in medical practices, particularly through the use of tourniquets to manage extremity bleeding and save lives.
  • - While tourniquets have significantly decreased deaths from bleeding in military settings, noncompressible hemorrhage still poses a major risk, especially before patients receive definitive medical care.
  • - The study explores using a small, disposable pressure monitor during resuscitative endovascular balloon occlusion of the aorta (REBOA) to enhance blood pressure monitoring, facilitate better resuscitation practices, and reduce the need for blood products in extreme environments.
View Article and Find Full Text PDF

Antinociceptive effects of fentanyl and nonopioid drugs in methocinnamox-treated rats.

Drug Alcohol Depend

July 2024

Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA; Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX 78229, USA. Electronic address:

Background: A single administration of the opioid receptor antagonist methocinnamox (MCAM) antagonizes the antinociceptive effects of µ-opioid receptor agonists for 2 weeks or longer. Such a long duration of antagonism could necessitate the use of nonopioid drugs for treating pain in patients receiving MCAM for opioid use disorder (OUD).

Methods: The antinociceptive effects of fentanyl and nonopioid drugs were assessed in 24 male Sprague Dawley rats using a complete Freund's adjuvant (CFA) model of inflammatory pain.

View Article and Find Full Text PDF

Triterpenes G-A and G-E from Galphimia glauca with anti-inflammatory and anti-arthritic activity in mice.

J Ethnopharmacol

June 2024

Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos, C.P, 62790, Mexico. Electronic address:

Ethnopharmacological Relevance: Galphimia glauca is a medicinal plant that treats inflammatory and anti-rheumatic problems. Its anti-inflammatory capacity has been reported pharmacologically, attributed to the triterpenes G-A and G-E.

Aim: The objective of the present work was to measure the anti-inflammatory and immunomodulatory effect of the methanolic extract (GgMeOH) of Galphimia glauca and the isolated galphimines G-A and G-E, first in an acute test of plantar edema with carrageenan, and later in the model of experimental-induced arthritis with CFA.

View Article and Find Full Text PDF

Development of nanostructured environmentally responsive system containing hydroxypropyl methylcellulose for nose-to-brain administration of meloxicam.

Int J Biol Macromol

March 2024

Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, 87020-900 Maringa, Parana, Brazil. Electronic address:

The intranasal administration of drugs using environmentally responsive formulations, employing a combination of hydroxypropyl methylcellulose (HPMC) and poloxamer 407 (P407), can result in release systems that may assist in the treatment of neurological diseases. Meloxicam, considered a potential adjuvant in the treatment of Alzheimer's disease, could be used in these platforms. The aim of this work was to develop a mucoadhesive, thermoresponsive, and nanostructured system containing HPMC for nose-to-brain administration of meloxicam.

View Article and Find Full Text PDF

Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!