This study aimed to select a high-performance cation-exchange resin (CER) and estimate its uptake of positively ionized tricyclic antidepressants (TCAs), i.e., amitriptyline (AMI), imipramine (IMI), clomipramine (CLO), and desipramine (DES), which are frequently used, and detected in wastewater treatment systems. For the selection of the resin, the one-point check test of AMI in distilled water was examined using several CERs. As a result, the strong-acid polystyrene CER, Dowex 50WX4-200, was selected on the basis of its outstanding uptake of AMI. The maximum adsorption capacities of Dowex 50WX4-200 for removal of the TCAs ranged from 2.53 ± 0.20 mmol/g to 3.76 ± 0.12 mmol/g, which are significantly higher when compared with those of previously reported adsorbents. This is likely because the combination of electrostatic and π-π interactions between the TCAs and Dowex 50WX4-200 may lead to high uptakes of the TCAs. Additionally, the removal efficiency of DES as a representative of the TCAs was tested in actual wastewater system containing activated sludge and miscellaneous cations. Consequently, the removal efficiencies of the DES in distilled water, aerobic wastewater, and filtered wastewater were 95.68%, 77.99%, and 56.66%, respectively. It is interesting to note that the activated sludge could also contribute to adsorption of the DES, leading to increased removability, while the cations present in the wastewater acted as competing ions, decreasing the removal efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-06549-1 | DOI Listing |
Environ Sci Pollut Res Int
July 2020
Environmental Biotechnology National Research Laboratory, School of Chemical Engineering Chonbuk National University, Beakje-dearo 567, Deokjin-gu, Jeonju, 54896, Republic of Korea.
Int J Pharm
October 2006
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
The objective of the present study is to include coating thickness non-uniformity in the development of a drug release model using coated ion-exchange pellets through the use of stochastic approaches. Drug release from ion-exchange resins was described using a Nernst-Plank model. Complexes of a model drug (dextromethorphan) and Dowex 50WX4-200 were prepared using a modified batch method and coated with Kollicoat SR 30D polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!