Sextuple ratiometric thermometry based on 980-nm-upconverted green fluorescence of Er ions in submicron crystals.

Mater Sci Eng C Mater Biol Appl

Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China. Electronic address:

Published: March 2020

AI Article Synopsis

  • A study measured green fluorescence spectra at 530 and 550 nm of Er/Yb-codoped NaGd(WO) submicron crystals across a temperature range of 298-383 K, demonstrating strong green fluorescence and thermal stability.
  • The research proposes a sextuple ratiometric thermometry method based on six fluorescence intensity ratio schemes, enhancing temperature measurement accuracy compared to traditional methods.
  • Ex vivo experiments confirm the biological applicability of the phosphor, showing similar results and indicating that the new thermometry improves reliability and precision in temperature sensing.

Article Abstract

980-nm-upconverted 530 and 550 nm Er green fluorescence spectra of Er/Yb-codoped NaGd(WO) submicron crystals were measured in the temperature range of 298-383 K. A sextuple ratiometric thermometry is proposed. It is established on the basis of six schemes of fluorescence intensity ratio (FIR) that considers three component peaks of the 530 nm emission band and two component peaks of the 550 nm emission band, which involve electronic transitions between two Stark sublevels of Er. The study shows that the phosphor shows strong green fluorescence, which is verified by measured quantum yield, and thermally stable spectral structure desired for the sextuple ratiometric thermometry. All of the six FIR schemes display highly efficient sensing performances with slightly different thermal sensitivities. Each scheme gives a temperature value and the six schemes give an averaged result. In parallel, we have also carried out an ex vivo experimental study on the temperature characteristics of the green fluorescence of the phosphor. Almost same results have been obtained, verifying biological applicability of the phosphor. The ex vivo experimental results also show that the sextuple thermometry increases considerably the accuracy and reliability of temperature measurement in comparison with the conventional intensity integration method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.110512DOI Listing

Publication Analysis

Top Keywords

green fluorescence
16
sextuple ratiometric
12
ratiometric thermometry
12
submicron crystals
8
component peaks
8
emission band
8
vivo experimental
8
fluorescence
5
sextuple
4
thermometry
4

Similar Publications

The development of pure-green organic emitters with ideal emission peak and ultra-narrow full-widths at half-maximum (FWHMs) remains a formidable challenge. Herein, we report two new green emitters, CNBN and MCNBN, which achieve extremely narrow FWHMs by synergistic rigid π-extension and cyano-substitution for sky-blue multi-resonance thermally activated delayed fluorescence (MR-TADF) core. The introduction of cyano groups induces red-shifts of emission to green region and dramatically minimize the FWHMs.

View Article and Find Full Text PDF

Upper limb lymphedema is the most common complication after breast cancer therapy. Suddenly disturbed lymphatic transport in the affected arm causes tissue fluid accumulation in tissue spaces, limb enlargement, and secondary changes in tissue. Early compression therapy is necessary.

View Article and Find Full Text PDF

With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers.

View Article and Find Full Text PDF

Bacterial strains that are genetically engineered to constitutively produce fluorescent proteins have aided our study of bacterial physiology, biofilm formation, and interspecies interactions. Here, we report on the construction and utilization of new strains that produce the blue fluorescent protein mTagBFP2, the green fluorescent protein sfGFP, and the red fluorescent protein mScarlet-I3 in species , and . Gene fragments, developed to contain the constitutive promoter P , the fluorescent gene of interest as well as , providing resistance to the antibiotic spectinomycin, were inserted into selected open reading frames on the chromosome that were both transcriptionally silent and whose loss caused no measurable changes in fitness.

View Article and Find Full Text PDF

Hydrodynamic cavitation induced fabrication of soy protein isolate-polyphenol complexes: Structural and functional properties.

Curr Res Food Sci

January 2025

School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.

The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!