Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage.

Waste Manag

School of Energy Management, Shri Mata Vaishno Devi University, Katra 182320, J&K, India; Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 80200, Saudi Arabia.

Published: February 2020

This work is focused on the preparation of an activated charcoal by carbonization of waste tire rubbers (WTRs) and its evaluation for shape-stabilization of dodecyl alcohol (DDA) as an organic phase change material (PCM) used for thermal energy storage (TES). In the composite, DDA had TES function as carbonized waste tire (CWT) acted as supporting and thermal conductive frameworks. CWT prevented leakage of melted DDA during phase change due to its good adsorption ability until the weight ratio of DDA reached 78%. The shape-stabilized composite PCM was characterized by FT-IR, XRD, SEM, DSC and TGA techniques. The DSC results revealed that the composite PCM had very appropriate melting point of 21.68 ± 0.12 °C and considerable high latent heat capacity of 181.6 ± 1.2 J/g for thermoregulation of buildings. Compared to DDA, thermal degradation temperature of the composite PCM was extended as about 50 °C. The 500-cycled composite PCM had still showed reliable TES properties. Additionally, thermal conductivity (0.431 ± 0.010 W/m·K) of the composite PCM was measured as about 2.3 times higher than that of DDA. The heating and cooling periods of the composite PCM were reduced by 17.2 and 20.0%, respectively compared to that of DDA due to its enhanced thermal conductivity. All results suggested that the produced CWT as low-cost and environmental friendly supporting material can be evaluated for absorbing PCMs used for passive solar TES utilization in buildings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.12.051DOI Listing

Publication Analysis

Top Keywords

composite pcm
24
waste tire
12
phase change
12
carbonized waste
8
composite
8
change material
8
thermal energy
8
energy storage
8
compared dda
8
thermal conductivity
8

Similar Publications

This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.

View Article and Find Full Text PDF
Article Synopsis
  • Rapid advancements in high-performance technologies, like EV batteries and AI systems, highlight the need for better thermal management solutions due to limitations of conventional phase change materials (PCMs).
  • A new PCM made from polyethylene oxide (PEO) and lignin was developed, addressing issues like phase leakage and instability by creating a durable interlocked structure that withstands high temperatures (up to 115 °C).
  • Testing shows that these lignin-modified PEO composites effectively absorb and release heat while maintaining their shape, making them a sustainable and efficient option for advanced thermal management, especially in battery thermal management systems (BTMSs).
View Article and Find Full Text PDF

Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar-Thermal Energy Management.

Molecules

January 2025

Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.

The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.

View Article and Find Full Text PDF

The practical application of polyethylene glycol (PEG) phase change materials (PCMs) necessitates exceptional shape stability, rapid thermal responsiveness, and a substantial thermal storage capacity. The present study focuses on the fabrication of a highly robust cellulose nanofibril (CNF) based aerogel with an ordered structure, serving as a three-dimensional (3D) scaffold for PEG to effectively prevent any potential leakage. Additionally, hydroxyl and amino functional groups are introduced to functionalize boron nitride nanosheets (BNNS-g), which are incorporated into the aerogel to enhance its thermal conductivity.

View Article and Find Full Text PDF

Flexible Phase Change Materials with High Energy Storage Density Based on Porous Carbon Fibers.

Polymers (Basel)

December 2024

Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!