Spinel-type structured materials have attracted considerable attention and been regarded as promising alternative catalysts for oxygen evolution reaction (OER). However, the regulation of catalytically active octahedral sites in spinel structure to realize high activity and good stability for OER electrocatalysis is still a great challenge. Herein, we propose a self-doping strategy to boost OER performance of spinel-type NiS enriched high valence Ni as active sites. By sacrificing Ni-based metal-organic framework, the ultrathin NiS manosheets are topologically grown on conductive Ni foam substrate and realize the simultaneous Ni self-doping and surface oxygen incorporation during in situ sulfidation conversion process. These compositional and structural characteristics endow it with enhanced adsorption binding strength, enabling the highly efficient OER. As a result, the NiS/NF exhibits excellent activity and outstanding stability toward OER electrocatalysis in alkaline medium, which only demands an ultralow overpotential of 266 mV to deliver a current density of 10 mA cm and manifests the stable OER process for at least 75 h. Moreover, when used as an effective overall water splitting electrolyzer, the NiS/NF achieves a current density of 10 mA cm at only 1.638 V with good long-term stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2019.12.036 | DOI Listing |
Sci Rep
January 2025
New materials Technology and Processing Reserearch Center, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
The conversion of diluted CO₂ into high-energy fuels is increasingly central to renewable energy research. This study investigates the efficacy of a Gd₂NiMnO₆ dendritic nanofibrous (DNF) photocatalyst in transforming carbon dioxide to methane through photoreduction. Gd₂NiMnO₆ DNF was found to provide active adsorption sites and control the strand dimensions for metal groups, facilitating the chemical absorption of CO₂.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China. Electronic address:
Background: Carbosulfan residues in environment is very harmful to human health. The rapid and high sensitive detection of carbosulfan residues is particularly important to guarantee human health and safety. The conventional chromatographic techniques and enzyme inhibition strategies cannot realize on-site and visual detection of carbosulfan.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:
Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan. Electronic address:
Background: Chemical derivatization is a common technique in liquid chromatography-mass spectrometry (LC-MS) metabolomics used to improve the ionizability and chromatographic properties of metabolites in complex biological samples. This process facilitates better detection and separation of a wide array of compounds. The reagent 2-(4-boronobenzyl) isoquinolin-2-ium bromide (BBII), developed as a glucose labeling reagent for matrix-assisted laser desorption/ionization MS, enhances ionization for glucose and other hydroxyl metabolites.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:
Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!