Increased m6A RNA modification is related to the inhibition of the Nrf2-mediated antioxidant response in di-(2-ethylhexyl) phthalate-induced prepubertal testicular injury.

Environ Pollut

Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China.

Published: April 2020

Di-(2-ethylhexyl) phthalate (DEHP) is a common environmental endocrine disrupting chemical that may induce male reproductive disorders. Exposure to DEHP at a prepubertal stage could lead to prepubertal testicular injury, but the underlying mechanisms remain unclear. In this study, we exposed Sprague-Dawley rats to 0, 250, and 500 mg DEHP per kg body weight per day at the prepuberty stage from postnatal day 22 (PND 22) to PND 35 by oral gavage. Testicular injury and oxidative stress were evaluated, and the levels of 6-methyladenosine (m6A) modification and expression of modulator genes for RNA methylation were measured in testes. Furthermore, m6A modification of the important antioxidant transcription factor Nrf2 was analyzed using methylated RNA immunoprecipitation qPCR. Our results show that DEHP worsened testicular histology, decreased testosterone concentrations, downregulated expression of spermatogenesis inducers, enhanced oxidative stress, inhibited the Nrf2-mediated antioxidant pathway, and increased apoptosis in testes. Additionally, DEHP increased global levels of m6A RNA modification and altered the expression of two important RNA methylation modulator genes, FTO and YTHDC2. Moreover, m6A modification of Nrf2 mRNA increased upon DEHP exposure. Overall, these findings link oxidative stress imbalance with epigenetic effects of DEHP toxicity and provide insight into the testicular toxicity of DEHP from the new perspective of m6A modification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.113911DOI Listing

Publication Analysis

Top Keywords

m6a modification
16
testicular injury
12
oxidative stress
12
m6a rna
8
rna modification
8
nrf2-mediated antioxidant
8
prepubertal testicular
8
dehp
8
modulator genes
8
rna methylation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!