It has been generally acknowledged that environment could alter the morphology and functional differentiation of vertebrate brain. However, as the largest group of all vertebrates, studies about the structures and functions of various brain subregions in teleost are still scarce. In this study, using grass carp as a model, histology method and RNA-sequencing were recruited to examine the microstructure and transcript levels among different brain subregions and pituitary. Histological results showed that the grass carp brain was composed of six parts, including olfactory bulb, telencephalon, hypothalamus, optic tectum, cerebellum, and medulla oblongata. In addition, compared to elasmobranchs and non-teleost bony ray-finned fishes, grass carp lost the hypothalamo-hypophyseal portal system, instead the hypophysiotropic neurons were directly terminated in the pituitary cells. At the transcriptomic level, our results suggested that the olfactory bulb might be related to reproduction and immune function. The telencephalon was deemed to be involved in the regulation of appetite and reproduction. The optic tectum might play important roles in the vision system and feeding. The hypothalamus could regulate feeding, and reproduction process. The medulla oblongata was related with the auditory system. The pituitary seemed to play pivotal roles in energy metabolism, organ development and reproduction. Finally, the correlation analysis suggested that the hypothalamus and the telencephalon were highly related, and close anatomical connection and overlapping functions suggested that the telencephalon and hypothalamus might be the regulation center of feeding and reproduction among teleost brain. This study provided a global view of the microstructures and specific functions of various brain subregions and pituitary in teleost. These results will be very helpful for further study in the neuroendocrinology regulation of growth and reproduction in teleost brain-pituitary axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2019.100653 | DOI Listing |
Background Obstructive sleep apnea (OSA) is an intermittent hypoxia disorder associated with cognitive dysfunction, including learning and memory impairments. There is evidence that alterations in protease activity and neuronal activation as associated with cognitive dysfunction, are dependent on sex, and may be brain region-specific. However, the mechanisms mediating OSA-induced cognitive impairments are unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
Introduction: Limited research has extensively analyzed neurodegenerative disease-related protein deposition patterns in the hippocampus.
Methods: This study examined the distribution of proteins in hippocampal subregions across major neurodegenerative diseases and explored their relation to each other. The area density of phosphorylated tau (p-tau), amyloid beta (Aβ), α-synuclein, and phosphorylated TDP-43 protein deposits together with pyramidal cell density in each hippocampal subregion, including CA1-4, prosubiculum (ProS), and subiculum was assessed in 166 cases encompassing various neurodegenerative diseases.
EBioMedicine
December 2024
Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, Faculty of Medicine, University of Bonn, Germany. Electronic address:
Background: Emerging findings indicate that the hypothalamus, the body's principal homeostatic centre, plays a crucial role in modulating cognition, but comprehensive population-based studies are lacking.
Methods: We used cross-sectional data from the Rhineland Study (N = 5812, 55.2 ± 13.
Hum Brain Mapp
December 2024
Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
The human hippocampus is a key region in cognitive and emotional processing, but also a vulnerable and plastic region. Accordingly, there is a great interest in understanding how variability in the hippocampus' structure relates to variability in behavior in healthy and clinical populations. In this study, we aimed to link interindividual variability in subregional hippocampal networks (i.
View Article and Find Full Text PDFJ Craniofac Surg
December 2024
Department of Anatomy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Background And Aims: The corpus callosum is recognized as the largest interhemispheric white matter structure, coordinating distinct functions of the brain. High-altitude environments may influence the structure of the corpus callosum. This study aims to evaluate the morphologic characteristics of the corpus callosum in Tibetans residing on the Qinghai-Tibet Plateau while investigating the effects of sex, age, and high-altitude exposure on its morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!