A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrative Construction and Analysis of Molecular Association Network in Human Cells by Fusing Node Attribute and Behavior Information. | LitMetric

Integrative Construction and Analysis of Molecular Association Network in Human Cells by Fusing Node Attribute and Behavior Information.

Mol Ther Nucleic Acids

Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Published: March 2020

Detecting whether a pair of biomolecules associate is of great significance in the study of molecular biology. Hence, computational methods are urgently needed as guidance for practice. However, most of the previous prediction models influenced by reductionism focused on isolated research objects, which have their own inherent defects. Inspired by holism, a machine-learning-based framework called MAN-node2vec is proposed to predict multi-type relationships in the molecular associations network (MAN). Specifically, we constructed a large-scale MAN composed of 1,023 miRNAs, 1,649 proteins, 769 long non-coding RNAs (lncRNAs), 1,025 drugs, and 2,062 diseases. Then, each biomolecule in MAN can be represented as a vector by its attribute learned by k-mer, etc. and its behavior learned by node2vec. Finally, the random forest classifier is applied to carry out the relationship prediction task. The proposed model achieved a reliable performance with 0.9677 areas under the curve (AUCs) and 0.9562 areas under the precision curve (AUPRs) under 5-fold cross-validation. Also, additional experiments proved that the proposed global model shows more competitive performance than the traditional local method. All of these provided a systematic insight for understanding the synergistic interactions between various molecules and diseases. It is anticipated that this work can bring beneficial inspiration and advance to related systems biology and biomedical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951835PMC
http://dx.doi.org/10.1016/j.omtn.2019.10.046DOI Listing

Publication Analysis

Top Keywords

integrative construction
4
construction analysis
4
analysis molecular
4
molecular association
4
association network
4
network human
4
human cells
4
cells fusing
4
fusing node
4
node attribute
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!