Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis), inhabiting the Yangtze River, are an endangered species in China. They are threatened by various kinds of pollutants, among which persistent organic pollutants (POPs) are of special concern due to their toxicities, high persistency and bioaccumulation potential. To better understand the POP contamination status of Yangtze finless porpoises, an investigation of stranded porpoises along the Yangtze River and adjacent two major lakes in the Yangtze River basin was conducted; the concentrations of four groups of legacy POPs, i.e., hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyl (PCBs), were determined in the blubber samples. The mean concentrations of ΣHCHs (the sum of all congeners/isomers), ΣDDTs, ΣPBDEs and ΣPCBs, were 1670 ± 4210, 28,800 ± 52,300, 141 ± 174, and 1020 ± 1070 ng/g lipid weight, respectively; the high DDTs/PCBs ratio reflected a strong influence of agricultural pollution in the Yangtze River basin, and the high α/γ ratio of HCH isomers indicated the usage of lindane in the corresponding areas; the predominance of low-brominated congeners of PBDEs may be related to congruent patterns in the related environmental matrices. A hazard quotient risk assessment revealed that DDTs could pose a relatively high risk to Yangtze finless porpoises compared with the risks posed by the other POPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.136446 | DOI Listing |
J Environ Manage
January 2025
College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing, 400716, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, China.
Nitrification inhibitors (NIs) are critical to reduce nitrogen (N) leaching losses. However, the efficacy of different NIs can be highly variable across soils and crop types, and a deeper understanding of the mechanistic basis of this efficiency variation, especially in purple soil under vegetable production, is lacking. To enrich this knowledge gap, the impact of different NIs amendment (3,4-dimethylpyrazole phosphate, DMPP; dicyandiamide, DCD; nitrapyrin, NP) on nitrification and the microbial mechanistic basis of controlling nitrate (NO-N) leaching of vegetable purple soil was explored in southwest China.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430,072, China.
Coordinating the downstream ecological demand and the power generation demand of hydropower stations is an important task in the operation of reservoirs, and how to evaluate the ecological satisfaction of the scheduling process is a difficult problem that needs to be solved urgently. A multi-objective optimal reservoir scheduling model was constructed to coordinate the spawning flow demand of " Four Major Chinese Carps"; The model takes the maximum power generation and the maximum membership degree of downstream river ecological water demand as the objective functions, and uses the dynamic programming multi-objective solution algorithm based on penalty factors to solve the problem, and obtains the non-inferior solution set in each scenario. The multilayer entropy-weighted TOPSIS method was used to study the non-inferior solution of the multi-objective scheduling model of the Three Gorges Reservoir, and the satisfactory solution ranking of the river flow rise process, ecological flow-related requirements, and power generation water requirements was obtained under the four schemes including 4d ~ 7d, which improved the reliability of the evaluation results and made up for the shortcomings of the traditional TOPSIS method in terms of hierarchy and weight science.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China. Electronic address:
Biogenic volatile organic compounds (BVOCs) are emitted by urban vegetation and can interact with anthropogenic pollutants to generate secondary organic aerosols (SOA) that are atmospheric pollutants in urban environments. In urban forests, SOA comprise up to 90 % of all fine aerosols (particulate matter smaller than 1 μm [PM]) in the summer. PM can greatly affect urban air quality and public health.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:
Lipid nanoparticles (LNPs) have shown promising performance in mRNA delivery. Nevertheless, a thorough understanding of the relationship between mRNA delivery efficacy and the structure of LNPs remains imperative. In this study, we systematically investigated the effects of additional hydrophobic amines on the physicochemical properties of mRNA LNPs and their delivery efficacy.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.
Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!