On-road gaseous and particulate emissions from GDI vehicles with and without gasoline particulate filters (GPFs) using portable emissions measurement systems (PEMS).

Sci Total Environ

University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA. Electronic address:

Published: March 2020

This study assessed the on-road gaseous and particulate emissions from three current technology gasoline direct injection (GDI) vehicles using portable emissions measurement systems (PEMS). Two vehicles were also retrofitted with catalyzed gasoline particulate filters (GPFs). All vehicles were exercised over four routes with different topological and environmental characteristics, representing urban, rural, highway, and high-altitude driving conditions. The results showed strong reductions in particulate mass (PM), soot mass, and particle number emissions with the use of GPFs. Particle emissions were found to be highest during urban and high-altitude driving compared to highway driving. The reduction efficiency of the GPFs ranged from 44% to 99% for overall soot mass emissions. Similar efficiencies were found for particle number and PM mass emissions. In most cases, nitrogen oxide (NOx) emissions showed improvements with the catalyzed GPFs in the underfloor position with the additional catalytic volume. No significant differences were seen in carbon dioxide (CO) and carbon monoxide (CO) emissions with the vehicles retrofitted with GPFs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.136366DOI Listing

Publication Analysis

Top Keywords

emissions
10
on-road gaseous
8
gaseous particulate
8
particulate emissions
8
gdi vehicles
8
gasoline particulate
8
particulate filters
8
filters gpfs
8
portable emissions
8
emissions measurement
8

Similar Publications

Stepwise Modulation of Bridged Single-Benzene-Based Fluorophores for Materials Science.

Chemistry

December 2024

Universitat Duisburg-Essen, Institute of organic chemistry, Universitätsstraße 7, 45117, Essen, GERMANY.

In recent years, researchers studying fluorogenic samples have steadily shifted from using large, expensive, poorly soluble fluorophores with complex synthetic sequences to smaller, simpler p scaffolds with low molecular weight. This research article presents an in-depth study of the photophysical properties of five bridged single-benzene-based fluorophores (SBBFs) investigated for their solution and solid-state emission (SSSE) properties. The compounds O4, N1O3, N2O2, N3O1, and N4 are derived from a central terephthalonitrile core and vary in the amount of oxygen and nitrogen bridging atoms.

View Article and Find Full Text PDF

Induction heating for the electrification of catalytic processes.

ChemSusChem

December 2024

ICPEES: Institut de Chimie et Procedes pour l'Energie l'Environnement et la Sante, catalysis and materials, FRANCE.

The increasing availability of electrical energy generated from clean, low-carbon, renewable sources like solar and wind power is paving the way for a more sustainable future. This has resulted in a growing trend in the chemical industry to increase the share of electricity use in chemical processes, particularly catalytic ones. Replacing fossil fuels with electricity can significantly reduce the carbon footprint associated with chemical production.

View Article and Find Full Text PDF

We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.

View Article and Find Full Text PDF

Background: Carbon-ion radiotherapy provides steep dose gradients that allow the simultaneous application of high tumor doses as well as the sparing of healthy tissue and radio-sensitive organs. However, even small anatomical changes may have a severe impact on the dose distribution because of the finite range of ion beams.

Purpose: An in-vivo monitoring method based on secondary-ion emission could potentially provide feedback about the patient anatomy and thus the treatment quality.

View Article and Find Full Text PDF

Multiyear and seasonal wide-scale indicators for French surface waters contamination by WFD substances.

Environ Sci Pollut Res Int

December 2024

Office Français de la Biodiversité (OFB), 5 Allée Félix Nadar, 94300, Vincennes, France.

This study offers an unprecedented valuation of the French surface waters WFD chemical monitoring dataset, covering 101 substances (metals, industrial and persistent organic pollutants (POPs), plant protection product (PPP) and biocides active substances, combustion residues) measured monthly on 4000 sites of the 6 main continental river basins, during 12 years (2009-2020). The concentration data were first made comparable through an original process removing the bias induced by the space-and-time heterogeneity of the monitoring labs performance, to gather a reference workable set of monthly contamination indicators. These were then used to display the substances' seasonal and interannual timeseries, revealing, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!