Tramadol (TRA) is a widely used human pharmaceutical and a well-established emerging pollutant and its potential genotoxic and cytotoxic effects on humans as well as its fate in aqueous systems demand full investigation. The present study is a multidisciplinary approach and provides important insights on the potential risks of Tramadol on humans accompanied by its photolytic transformation under simulated solar irradiation. The present study revealed that Tramadol can induce genotoxic and cytotoxic effects under the specific experimental conditions, significantly depended on the tested concentration. In addition, the photolytic transformation of Tramadol was investigated in detail under simulated solar irradiation in two different water matrices: ultrapure water (UW) and treated wastewater (WW). Differences in the degradation rates were observed between UW and WW, being slower in WW. The results showed that more than 70% of Tramadol was removed after 240 min in UW ([TRA] = 10 mg L, I = 500 W m). After this period, TOC removal was found to be about 40%. Transformation of N atoms into NO and NH followed a similar trend reaching up to 38% release. Τramadol degraded mainly by HO radicals and O through a self-sensitizing process while direct photolysis was also significant. Hydroxylation, demethylation and N-oxidation of the parent compound were found to be the main degradation pathways confirming the important role of HO and O in the photolytic process. Toxicity measurements showed a noticeable increase of the inhibition for Vibrio fischeri at the first stages which coincide with the formation of the major TPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.135396DOI Listing

Publication Analysis

Top Keywords

genotoxic cytotoxic
8
cytotoxic effects
8
photolytic transformation
8
simulated solar
8
solar irradiation
8
tramadol
6
assessing human
4
human risk
4
risk environmental
4
environmental fate
4

Similar Publications

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

The World Health Organization has confirmed that asbestos fibres are carcinogenic, claiming that asbestos-related diseases should be eradicated worldwide. Actinolite, amosite, anthophyllite, chrysotile, crocidolite, and tremolite are regulated asbestiform mineral phases. However, in nature, asbestos minerals occur either in a fibrous and asbestiform (original morphology characterized by high length-to-width ratio and provided of high tensile strength and flexibility) or fibrous but not asbestiform appearance.

View Article and Find Full Text PDF

DNA replication stress (RS), a prevalent feature of various malignancies, arises from both genetic mutations and genotoxic exposure. Elevated RS levels increase the vulnerability of cancer cells to ataxia telangiectasia and Rad3-related kinase inhibitors (ATRis). Here, we screened for DNA damage response inhibitors that enhance ATRi-induced cytotoxicity using SWI/SNF complex-deficient cells and identified a potent synergy between ATRi and poly(ADP-ribose) polymerase inhibitor (PARPi), particularly in SMARCA4-deficient cells.

View Article and Find Full Text PDF

The widespread use of electronic devices has led to increased blue light exposure, highlighting the need for effective radiation blockers with blue light protection. Two synthetic 2-(2'-hydroxyphenyl)benzoxazole derivatives named azo-4'-benzoxazole and azo-5'-benzoxazole have shown an unprecedented blue light absorption capacity but had not been subjected to a safety evaluation. This study aimed to evaluate the cytotoxic, genotoxic, and mutagenic activities of these compounds.

View Article and Find Full Text PDF

Although atomoxetine, a selective norepinephrine reuptake inhibitor, is widely used in the treatment of attention-deficit/hyperactivity disorder (ADHD), there is limited data on its cytogenetic effects. This study aimed to investigate the cytotoxicity and genotoxicity of atomoxetine and . Chromosome aberration and micronucleus assays were used to analyze the genotoxic effect of atomoxetine in human peripheral blood lymphocytes under culture conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!