Immunotherapies for cancer treatment constitute promising avenues to fight this global health issue. Algae can be used as both biofactories and delivery vehicles of vaccines; having low cost, fast growth, enhanced safety, and adjuvant effects as advantages. In the present study a multiepitope protein, called BCB, was designed as an attractive approach to develop new cancer immunotherapies. The BCB protein targets epitopes from the following tumor-associated antigens: human epidermal growth factor receptor-2 (HER2), mucin-like glycoprotein 1 (MUC1), Wilms' tumor antigen (WT1), and mammaglobin. Moreover, the BCB protein is based on the B subunit of the heat labile E. coli enterotoxin as immunogenic carrier to brake tolerance against self-antigens. A synthetic BCB-coding gene was obtained and expressed in Schizochytrium sp. using the Algevir system. The BCB protein was successfully expressed in transformed algae at levels up to 637 μg/g fresh weight, retaining the GM1-binding activity. The algae-made BCB showed reactivity towards an anti-serum against the tumor cell line 4T1; evidencing its antigenicity. Moreover the immunogenicity was evidenced in mice immunized with BCB, which developed serum IgG antibodies reacting against the 4T1 lysate. This study constitutes the first step in the development of innovative algae-based vaccines against cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.250 | DOI Listing |
J Neurol
December 2024
Copenhagen Research Center for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
Introduction: SARS-CoV-2 antibodies in the cerebrospinal fluid (CSF) of COVID-19 patients possibly reflect blood-cerebrospinal fluid barrier (BCB) disruption due to systemic inflammation. However, some studies indicate that CSF antibodies signal a neurotropic infection. Currently, larger studies are needed to clarify this, and it is unknown if CSF antibodies appear solely after infection or also after COVID-19 vaccination.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.
Electrophilic covalent warheads with appropriate reactivity and selectivity are crucial to the investigation of protein function and the discovery of therapeutics. Here we report the synthesis of sulfoximine bicyclo[1.1.
View Article and Find Full Text PDFBioanalysis
November 2024
European Bioanalysis Forum, Havenlaan 86c b204, 1000, Brussels, Belgium.
Following up on our most recent discussion paper focusing on the continued regulatory challenges for bioanalysis of biotherapeutic and biomarker proteins with LC-MS/MS, the European Bioanalysis Forum reports back on their internal discussions on and experience with method development for biotherapeutic and biomarker proteins in research and regulated bioanalysis. Due to the broad array of topics discussed, this information is spread over two research papers, where one focusses on the fundamental principles on which the technology is built (i.e.
View Article and Find Full Text PDFBioanalysis
November 2024
European Bioanalysis Forum, Havenlaan 86c b204, 1000, Brussels, Belgium.
Zygote
October 2024
Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar243122, India.
The study was conducted on indigenous Tharparkar cow () to evaluate FSH stimulation on follicular attributes, oocyte recovery and morpho-molecular developmental competence parameters concerning oocyte quality. A total of 20 OPU sessions were performed, which included 10 sessions in each FSH stimulated at the dose of 130 µg divided into four sub-doses and non-stimulated. Findings on the size of follicles having ≥6 mm showed a significantly higher, however an opposite trend was observed in the case of smaller sized follicle (<6 mm) between stimulated and non-stimulated respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!