LONP1 is an ATP-dependent protease and chaperone that plays multiple vital roles in mitochondria. LONP1 is essential for mitochondrial homeostasis due to its role in maintenance of the mitochondrial genome and its central role in regulating mitochondrial processes such as oxidative phosphorylation, mitophagy, and heme biosynthesis. Bi-allelic LONP1 mutations have been reported to cause a constellation of clinical presentations. We report a patient heterozygous for a de novo mutation in LONP1: c.901C>T,p.R301W presenting as a neonate with seizures, encephalopathy, pachygyria and microcephaly. Assays of respiratory chain activity in muscle showed complex II-III function at 8% of control. Functional studies in patient fibroblasts showed a signature of dysfunction that included significant decreases in known proteolytic targets of LONP1 (TFAM, PINK1, phospho-PDH E1α) as well as loss of mitochondrial ribosome subunits MRPL44 and MRPL11 with concomitant decreased activity and level of protein subunits of oxidative phosphorylation complexes I and IV. These results indicate excessive LONP1 proteolytic activity and a loss of LONP1 chaperone activity. Further, we demonstrate that the LONP1 N-terminal domain is involved in hexamer stability of LONP1 and that the ability to make conformational changes is necessary for LONP1 to regulate proper functioning of both its proteolytic and chaperone activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628847 | PMC |
http://dx.doi.org/10.1016/j.mito.2020.01.004 | DOI Listing |
Sci Rep
December 2024
Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.
The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines.
View Article and Find Full Text PDFDev Cell
December 2024
Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150081, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150080, China. Electronic address:
Advanced atherosclerosis is the pathological basis for acute cardiovascular events, with significant residual risk of recurrent clinical events despite contemporary treatment. The death of foamy macrophages is a main contributor to plaque progression, but the underlying mechanisms remain unclear. Bulk and single-cell RNA sequencing demonstrated that massive iron accumulation in advanced atherosclerosis promoted foamy macrophage ferroptosis, particularly in low expression of triggering receptor expressed on myeloid cells 2 (TREM2) foamy macrophages.
View Article and Find Full Text PDFChem Biol Interact
December 2024
Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong,250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China. Electronic address:
Doxorubicin (Dox) is a widely used antineoplastics although its clinical usage is greatly limited by its cardiotoxicity. Several studies have depicted an essential role for dampened mitophagy and mitochondrial injury in Dox cardiotoxicity. However, preventative measure to alleviate Dox-evoked cardiotoxicity via targeting mitophagy and mitochondrial integrity remains elusive.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China.
Hibernating mammals experience severe hemodynamic changes over the torpor-arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear.
View Article and Find Full Text PDFTrends Mol Med
December 2024
Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China. Electronic address:
Recent research highlights that Lon protease 1 (LONP1) regulates steroidogenesis in the ovary and plays a role in oocyte development and quality control. Dysregulation of LONP1 has been observed in polycystic ovary syndrome and ovarian aging. This forum article explores the role of LONP1 in the ovary and its therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!