Background: The occurrence in drug resistance of chronic myeloid leukemia (CML) was accompanied by autophagy activation. Abnormal circular RNAs (circRNAs) participated in this progression. This study attempted to investigate the potential role of circ_0009910 in imatinib resistance of CML cells.

Methods: The expression of circ_0009910 and miR-34a-5p was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The characterization of circ_0009910 was investigated using oligo (dT)18 primers, Actinomycin D and RNase R. Cell viability (IC value) and apoptosis were assessed by Cell Counting Kit-8 (CCK8) assay and flow cytometry assay, respectively. The relative protein expression was quantified by western blot. The relationship among miR-34a-5p, circ_0009910 and ULK1 was predicted by online bioinformatics tool, and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP).

Results: The expression of circ_0009910 was up-regulated in the serum of imatinib-resistance CML patients and K562/R cells, and associated with unfavorable clinicopathologic features. Circ_0009910 in K562 and K562/R cells was mainly localized in the cytoplasm. Circ_0009910 knockdown inhibited cell proliferation and autophagy, but induced apoptosis in K562/R cells. Circ_0009910 targeted miR-34a-5p to regulate ULK1. MiR-34a-5p depression rescued the effects of circ_0009910 knockdown on apoptosis and autophagy in K562/R cells.

Conclusion: Circ_0009910 accelerated imatinib-resistance in CML cells by modulating ULK1-induced autophagy via targeting miR-34a-5p, providing a potential target in imatinib resistance of CML.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.117255DOI Listing

Publication Analysis

Top Keywords

imatinib resistance
12
k562/r cells
12
circ_0009910
11
ulk1-induced autophagy
8
chronic myeloid
8
myeloid leukemia
8
resistance cml
8
expression circ_0009910
8
imatinib-resistance cml
8
circ_0009910 knockdown
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!