Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon nanotubes (CNTs) have desirable mechanical properties for use as biomaterials in orthopedic and dental area such as bone- and tooth- substitutes. Here, we demonstrate that a glass surface densely coated with single-walled carbon nanotubes (SWNTs) stimulate the osteogenic differentiation of rat bone marrow mesenchymal stem cells (MSCs). MSCs incubated on SWNT- and multi-walled carbon nanotube (MWNT)-coated glass showed high activities of alkaline phosphatase that are markers for early stage osteogenic differentiation. Expression of Bmp2, Runx2, and Alpl of MSCs showed high level in the early stage for MSC incubation on SWNT- and MWNT-coated surfaces, but only the cells on the SWNT-coated glass showed high expression levels of Bglap (Osteocalcin). The cells on the SWNT-coated glass also contained the most calcium, and their calcium deposits had long needle-shaped crystals. SWNT coating at high density could be part of a new scaffold for bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953859 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225589 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!