The strains of inbred laboratory mice are isogenic and homogeneous for over 98.6% of their genomes. However, geometric morphometric studies have demonstrated clear differences among the skull shapes of various mice strains. The question now arises: why are skull shapes different among the mice strains? Epigenetic processes, such as morphological interaction between the muscles and bones, may cause differences in the skull shapes among various mice strains. To test these predictions, the objective of this study is to examine the morphological association between a specific part of the skull and its adjacent muscle. We examined C57BL6J, BALB/cA, and ICR mice on embryonic days (E) 12.5 and 16.5 as well as on postnatal days (P) 0, 10, and 90. As a result, we found morphological differences between C57BL6J and BALB/cA mice with respect to the inferior spine of the hypophyseal cartilage or basisphenoid (SP) and the tensor veli palatini muscle (TVP) during the prenatal and postnatal periods. There was a morphological correlation between the SP and the TVP in the C57BL6J, BALB/cA, and ICR mice during E15 and P0. However, there were not correlation between the TVP and the SP during P10. After discectomy, bone deformation was associated with a change in the shape of the adjacent muscle. Therefore, epigenetic modifications linked to the interaction between the muscles and bones might occur easily during the prenatal period, and inflammation seems to allow epigenetic modifications between the two to occur.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953862PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227301PLOS

Publication Analysis

Top Keywords

muscles bones
12
skull shapes
12
shapes mice
12
c57bl6j balb/ca
12
morphological association
8
differences skull
8
mice strains
8
interaction muscles
8
adjacent muscle
8
balb/ca icr
8

Similar Publications

Human hands have over 20 degrees of freedom, enabled by a complex system of bones, muscles, and joints. Hand differences can significantly impair dexterity and independence in daily activities. Accurate assessment of hand function, particularly digit movement, is vital for effective intervention and rehabilitation.

View Article and Find Full Text PDF

A Risk Score to Identify Low Bone Mineral Density for Age in Young Patients with Anorexia Nervosa.

Nutrients

December 2024

Department of Emergency and Post-Emergency Psychiatry, CHU Montpellier, INSERM, University of Montpellier, 34295 Montpellier, France.

Objective: Developing a scoring assessment tools for the determination of low bone mass for age at lumbar spine and hip in patients with anorexia nervosa (AN).

Methods: The areal bone mineral density (aBMD) was determined with dual-energy X-ray absorptiometry (DXA). In 331 women with AN and 121 controls, aged from 14.

View Article and Find Full Text PDF

The Musculoskeletal Anatomy of the Komodo Dragon's Hindlimb (, Varanidae).

Animals (Basel)

December 2024

Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland.

The Komodo dragon () is the largest extant lizard and is classified as an endangered species. Despite its rarity, anatomical studies on this species remain limited, hindering a comprehensive understanding of its biology and evolutionary traits. This research presents a detailed anatomical and histological examination of the pelvic limb of a female Komodo dragon, providing valuable insights into the musculoskeletal system of this species.

View Article and Find Full Text PDF

Zebrafish () have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy.

View Article and Find Full Text PDF

Background: Pulmonary tuberculosis (PTB) accounts for 85% of all reported tuberculosis cases globally. Extrapulmonary involvement can occur in isolation or along with a pulmonary focus as in the case of patients with disseminated tuberculosis (TB). EPTB can occur through hematogenous, lymphatic, or localized bacillary dissemination from a primary source, such as PTB and affects the brain, eye, mouth, tongue, lymph nodes of neck, spine, bones, muscles, skin, pleura, pericardium, gastrointestinal, peritoneum and the genitourinary system as primary and/or disseminated disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!