We derive the strongest constraint on the fraction of dark matter that can be composed of low mass primordial black holes by using the observation of the Galactic Center 511 keV γ-ray line. Primordial black holes of masses ≲10^{15} kg will evaporate to produce e^{±} pairs. The positrons will lose energy in the Galactic Center, become nonrelativistic, then annihilate with the ambient electrons. We derive robust and conservative bounds by assuming that the rate of positron injection via primordial black hole evaporation is less than what is required to explain the SPI/INTEGRAL observation of the Galactic Center 511 keV γ-ray line. Depending on the primordial black hole mass function and other astrophysical uncertainties, these constraints are the most stringent in the literature and show that primordial black holes contribute to less than 1% of the dark matter density. Our technique also probes part of the mass range which was completely unconstrained by previous studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.251101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!