Phosphors have been used successfully for both research and commercial applications for decades. Eu-doped materials are especially promising, because of their extremely stable, efficient, and narrow red emission lines. Although these emission properties are ideal for lighting applications, weak absorption in the blue spectral range has until now prevented the use of Eu-based phosphors in applications based on blue light-emitting diodes. Here, we demonstrate a sensitization mechanism of Eu based on interparticle Förster resonance energy transfer (IFRET) between lanthanide-doped inorganic nanocrystals (NCs). Compared to co-doping different lanthanides in the same host crystal, IFRET allows an independent choice of host lattices for Eu and its sensitizer while potentially greatly reducing metal-to-metal charge transfer quenching. We demonstrate IFRET between NCs, resulting in red Eu emission upon blue excitation at 485 nm using LaPO:Tb/LaPO:Eu and LaPO:Tb/YVPO:Eu NC mixtures. These findings pave the way toward engineering blue-sensitized line emitters for solid-state lighting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.9b03764DOI Listing

Publication Analysis

Top Keywords

energy transfer
8
red emission
8
lighting applications
8
sensitization nonradiative
4
nonradiative interparticle
4
interparticle energy
4
transfer inorganic
4
inorganic nanoparticles
4
nanoparticles phosphors
4
phosphors commercial
4

Similar Publications

Ratiometric sensor based on Ag-mediated luminescence of Tb-DNA complexes for visual detection of 4-aminophenol.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China. Electronic address:

Development of accurate, convenient and portable methods for monitoring 4-aminophenol (4-AP) is extremely important because of its strong toxicity. Here, a ratiometric fluorescence sensor based on Ag-enhanced luminescence of Tb-DNA complexes has been presented for the detection of 4-AP. The luminescence of Tb-DNA complexes is enhanced about 30 times by Ag, which can trigger energy transfer from DNA to Tb more efficiently.

View Article and Find Full Text PDF

To realize the aim of easy and accurate detection of ammonia and picric acid (PA) in both aqueous and vapor phases based on function-oriented investigation principles, in the present study, we include a luminescent performance with recognition performance, taking into account the application conditions. Zn(II) ions with luminescence qualities and an amine-substituted imidazole moiety with selective recognition properties towards picric acid and ammonia are coupled to generate a novel 1D luminous Zn(II) coordination polymer, Zn-CP [{Zn(II)( 2-ABZ)2(2-BDC)}].MeOH]∞, where 2-ABZ and 2-BDC stand for terephthalic acid and protonated 2 aminobenzimidazole, respectively.

View Article and Find Full Text PDF

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!