Horizontal-, Vertical-, and Cross-Conjugated Small Molecules: Conjugated Pathway-Performance Correlations along Operation Mechanisms in Ternary Non-Fullerene Organic Solar Cells.

Small

Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.

Published: February 2020

A family of the SM-axis series based on benzo[1,​2-​b:4,​5-​b']​dithiophene and 3-ethylrhodanine (RD) units with structurally different π-conjugation systems are synthesized as a means to understand the structure-property relationship of conjugated pathways in ternary non-fullerene organic solar cells (NF-OSCs) as a third component. The optical and electrochemical properties of the SM-axis are highly sensitive both to the functionalized direction and to the number of RD groups. Enhanced power conversion efficiencies (PCEs) of over 11% in ternary devices are obtained by incorporating optimal SM-X and SM-Y contents from PBDB-T:ITIC binary NF-OSCs, while a slightly lower PCE is observed with the addition of SM-XY. The results of in-depth studies using various characterization techniques demonstrate that working mechanisms of SM-axis-based ternary NF-OSCs are distinctly different from one another: an energy-transfer mechanism with an alloy-like model for SM-X, a charge transfer with the same model for SM-Y, and an energy transfer without such a structure for SM-XY. As extension of the scope, a SM-X-based ternary NF-OSC in the PM6:IT4F system also shows a greatly enhanced PCE of over 13%. The findings provide insights into the effects of conjugated pathways of organic semiconductors on mechanisms of ternary NF-OSCs, advancing the understanding for synthetic chemists, materials engineers, and device physicists.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201905309DOI Listing

Publication Analysis

Top Keywords

mechanisms ternary
8
ternary non-fullerene
8
non-fullerene organic
8
organic solar
8
solar cells
8
conjugated pathways
8
ternary nf-oscs
8
ternary
6
horizontal- vertical-
4
vertical- cross-conjugated
4

Similar Publications

Photochemistry of Microsolvated Nitrous Acid: Observation of the Water-Separated Complex of Nitric Oxide and Hydroxyl Radical.

J Phys Chem Lett

January 2025

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

The photochemistry of nitrous acid (HONO) plays a crucial role in atmospheric chemistry as it serves as a key source of hydroxyl radicals (OH) in the atmosphere; however, our comprehension of the underlying mechanism for the photochemistry of HONO especially in the presence of water is far from being complete as the transient intermediates in the photoreactions have not been observed. Herein, we report the photochemistry of microsolvated HONO by water in a cryogenic N matrix. Specifically, the 1:1 hydrogen-bonded water complex of HONO was facially prepared in the matrix through stepwise photolytic O oxidation of the water complex of imidogen (NH-HO) via the intermediacy of the elusive water complex of peroxyl isomer HNOO.

View Article and Find Full Text PDF

Water contamination is a result of the excessive use of antibiotics nowadays. Owing to this environmental toxicity, photocatalytic degradation is the primary approach to non-biological degradation for their removal. In this context, zerovalent Bi-doped g-CN/BiMoO [g-CN/Bi@BiMoO] ternary nanocomposite was prepared using the wet impregnation method.

View Article and Find Full Text PDF

A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.

View Article and Find Full Text PDF

TiCT/Au NPs/PPy ternary heterostructure-based intra-capacitive self-powered sensor for DEHP detection.

J Hazard Mater

January 2025

Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Phthalate esters, particularly di(2-ethylhexyl) phthalate (DEHP), are widely used plasticizers found in various consumer products, posing significant environmental and health risks due to their endocrine-disrupting effects. In this study, a novel enzyme-free intra-capacitive biofuel cell self-powered sensor (ICBFC-SPS) was developed. The ICBFC-SPS integrated a ternary heterostructure-based capacitive anode and a cathode with a sensing interface into a single-chamber electrolytic cell.

View Article and Find Full Text PDF

Functional nanoplatform for modulating cellular forces to enhance antitumor immunity via mechanotransduction.

J Control Release

January 2025

Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:

Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!